

EV2322-D-00A

1A,22V,Low IQ

Step Down Converter Evaluation Board

DESCRIPTION

The EV2322-D-00A Evaluation Board is designed to demonstrate the capabilities of MPS' MP2322, a high light load efficiency synchronous rectified step-down switch mode converter with built in internal power MOSFETs. It offers a very compact solution to achieve 1A continuous output current over a wide input supply range with excellent load and line regulation.

The MP2322 switching edge is optimized for EMI reducing. COT (Constant On Time) control provides seamless mode transition and fast load transient response.

Full protection features include OCP, OVP and thermal shut down.

The MP2322 requires 7 of readily available standard external components and is available in a space saving QFN-8(1.5mmx2mm) package.

ELECTRICAL SPECIFICATION

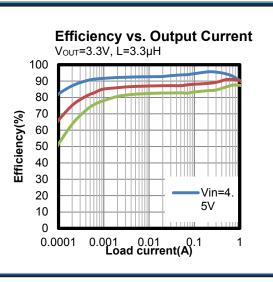
Parameter	Symbol	Value	Units
Input Voltage	V _{IN}	12	V
Output Voltage	Vout	3.3	V
Output Current	Іоит	1	Α

FEATURES

- Wide 3V to 22V Operating Input Range
- 5µA Low IQ
- 1A Load Current, 500mA trim version
- 260m Ω /120m Ω Rds(on) Internal Power MOSFETs
- High Efficiency from 100µA to 1A Load
- Power Save Mode in Light Load Condition
- 1.25MHz Switching Frequency
- T_{ON} Extension to Support Large Duty Cycle
- Power Good Indication
- EN shutdown discharge
- OCP and OVP Protection and Hiccup
- Fast Load Transient Response
- Stable with both large ESR capacitor and ceramic capacitor
- Output Adjustable from 0.6V
- Available in small QFN-8(1.5mmx2mm) package

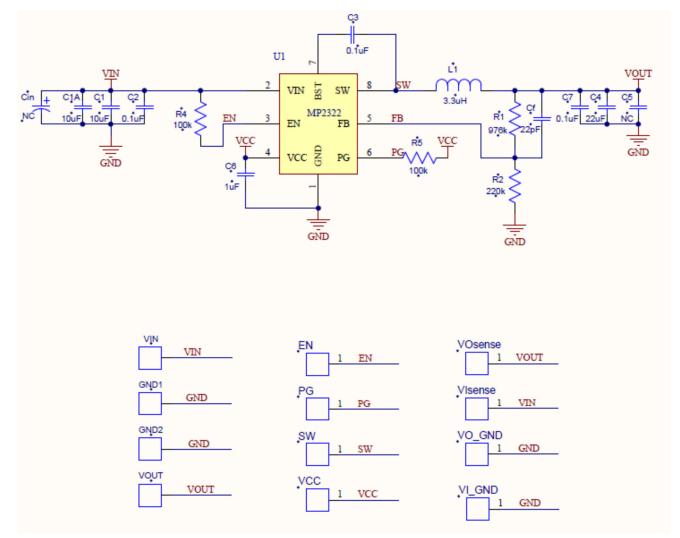
APPLICATIONS

- Home Automation, Home Security
- Single or Multi Cell Li-ion Battery System
- Multi Cell Dry Battery System
- 12V Input Power Rails
- White Goods


All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.

EV2322-D-00A EVALUATION BOARD

(L × W × H) 64mm × 48mm × 1.6mm


Board Number	MPS IC Number		
EV2322-D-00A	MP2322GQH		

www.MonolithicPower.com

EVALUATION BOARD SCHEMATIC

EV2322-D-00A BILL OF MATERIALS

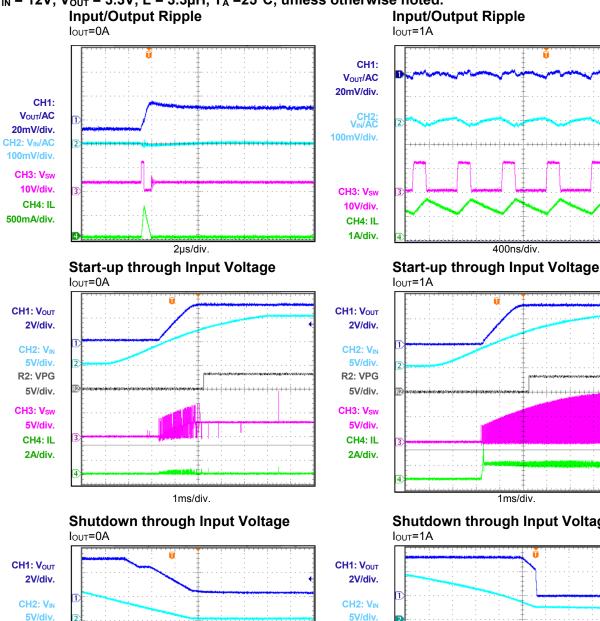
Quantity	Designator	Value	Description	Package	Manufacturer	Manufacturer P/N
2	C1, C1A	10µF	Ceramic Cap.,25V,X5R	1206	Murata	GRM31CR61E106KA12L
3	C2, C3,C7	100nF	Ceramic Cap.,25V,X7R	0603	Murata	GRM188R71E104KA01D
1	C4	22µF	Ceramic Cap.,16V,X5R	1206	Murata	GRM31CR61C226ME15L
1	Cf	22pF	Ceramic Cap.,50V,COG	0603	Murata	GRM1885C1H220JA01D
1	C6	1µF	Ceramic Cap.,10V,X5R	0603	Murata	GRM188R61A105KA61D
1	R1	976K	Film Res,1%,0603,97 6K	0603	YAGEO	RC0603FR-07976KL
1	R2	220K	Film Res,1%,0603,22 0K	0603	YAGEO	RC0603FR-07220KL
2	R4, R5	100K	Film Res,1%,0603,10 0K	0603	YAGEO	RC0603FR-07100KL
8	1mm golden pin	φ1.0	φ1copper pin	DIP	N/A	φ1.0 copper pin
4	2mm golden pin	φ2.0	φ2.0copper pin	DIP	N/A	φ2.0 copper pin
1	L1	3.3µH	Inductor, DCR=9mohm, Isat=9A	7.0*6.9	Wurth	744314330
1	U1	MP23 22	Synchronous step down convertor	QFN-8 (1.5mmx2mm)	MPS	MP2322

R2: VPG

CH3: Vsw

5V/div.

5V/div.

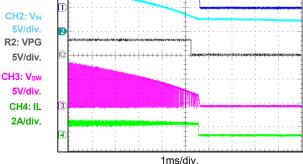

CH4: IL

2A/div.

EVB TEST RESULTS

Performance waveforms are tested on the evaluation board.

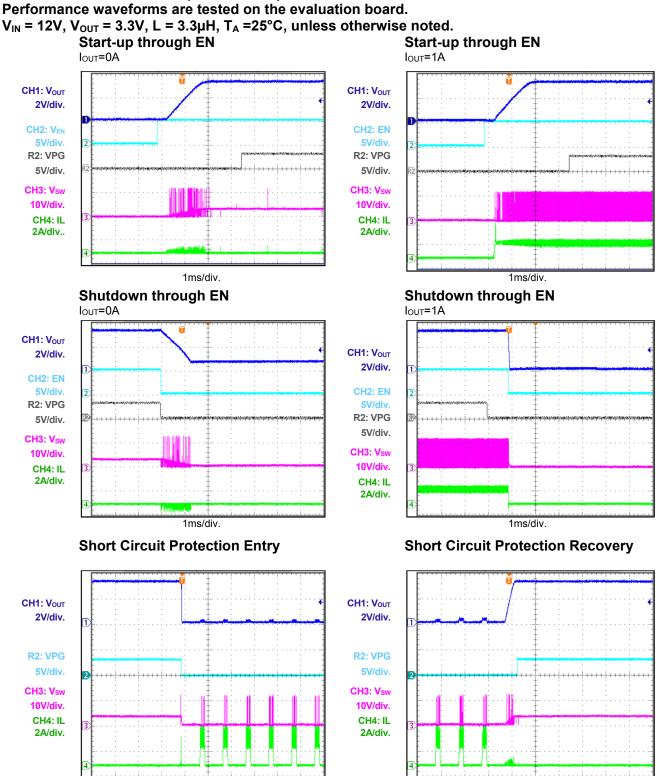
 V_{IN} = 12V, V_{OUT} = 3.3V, L = 3.3µH, T_A =25°C, unless otherwise noted.



1ms/div. Shutdown through Input Voltage

400ns/div.

'n



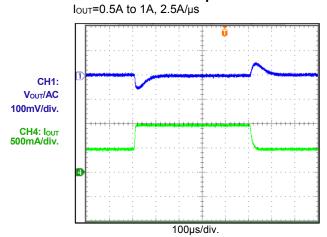
10ms/div.

EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board.

4ms/div.

4ms/div.



EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board.

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 3.3µH, T_A =25°C, unless otherwise noted.

Load Transient Response

PRINTED CIRCUIT BOARD LAYOUT

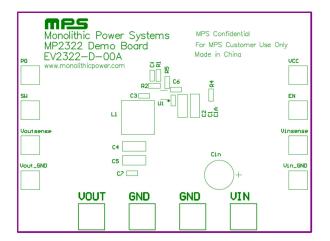


Figure 1: Top Silk Layer

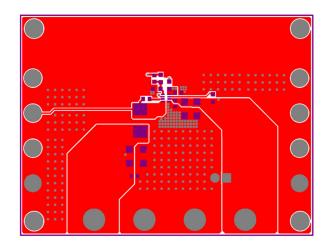


Figure 2: Top Layer

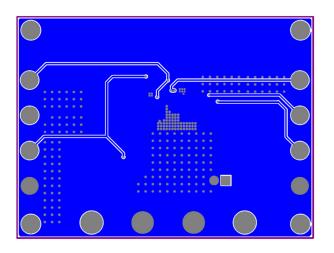


Figure 3: Bottom Layer

QUICK START GUIDE

- 1. Preset Power Supply to V_{IN} = 12V.
- 2. Turn Power Supply off.
- 3. Connect Power Supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 4. Connect Load to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 5. Turn Power Supply on after making connections. The board will automatically start up.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.