

# EV4030A-S-01B

185VAC~265VAC/50Hz, 30V/520mA **Primary-Side Control with Active PFC** Offline Dimmable LED Driver Evaluation Board

#### DESCRIPTION

The EV4030A-S-01B Evaluation Board is designed to demonstrate the capabilities of MP4030A suppressor. with ripple MP4030A is a primary-side-control offline LED lighting controller which can achieve high power factor and accurate current for Triac dimmable LED lighting application. It works in boundary conduction mode for reducing the MOSFET and Diode switching losses. The ripple suppressor can obviously reduce the output current ripple and escape the flicker or shimmer happened in deep dimming situation.

The EV4030A-S-01B is typically designed for driving a 15W Triac dimmable LED bulb with 30V<sub>TYP</sub>, 520mA LED load from 185VAC to 265VAC, 50Hz.

The EV4030A-S-01B has an excellent efficiency and meets IEC61547 surge immunity, IEC61000-3-2 Class С harmonics EN55015 conducted EMI requirements. It has multi-protection function as over-voltage protection; primary side over current protection; short-circuit protection, cycle by cycle current limit, etc.

### **ELECTRICAL SPECIFICATION**

| Parameter              | Symbol           | Value      | Units |
|------------------------|------------------|------------|-------|
| Input Voltage          | VIN              | 185 to 265 | VAC   |
| Output Voltage         | V <sub>OUT</sub> | 30         | V     |
| LED Current            | ILED             | 520        | mA    |
| Output Power           | Роит             | 15         | W     |
| Efficiency (full load) | η                | >83        | %     |
| Power Factor           | PF               | >0.9       |       |
| THD                    | THD              | <20        | %     |

#### **FEATURES**

- Fast Start up
- Triac Dimmable, with 1% to 100% dimming range and the dimming curve meets standard SSL6
- Real current control without secondaryfeedback circuit
- Unique architecture for superior line regulation
- High power factor>0.9 over 185VAC to 265VAC
- Boundary conduction mode improves efficiency
- Input UVLO
- Cycle-by-cycle current limit
- Over-voltage protection (OVP)
- Short-circuit protection (SCP)
- Primary side over current protection(POCP)
- Over-temperature protection (OTP)
- Fit inside PAR38 bulb enclosure

### **APPLICATIONS**

- Solid State Lighting
- Industrial & Commercial Lighting
- Residential Lighting

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.



Warning: Although this board is designed to satisfy safety requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the ligh Voltage prototype board.



# **EV4030A-S-01B EVALUATION BOARD**





(L x W x H) 88mm x 30mm x 23mm

| Board Number  | MPS IC Number |
|---------------|---------------|
| EV4030A-S-01B | MP4030AGS     |

2



# **EVALUATION BOARD SCHEMATIC**

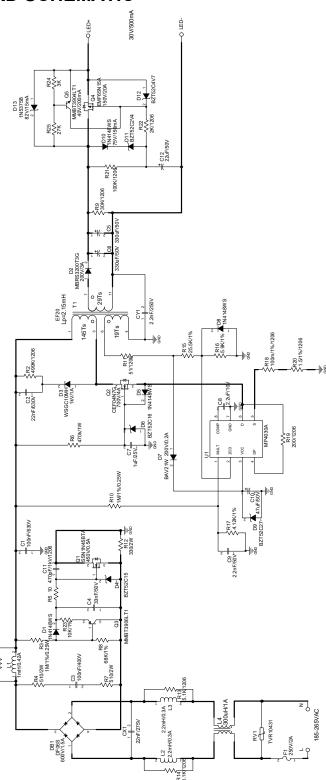



Figure 1—Schematic



# PCB LAYOUT (SINGLE-SIDED)

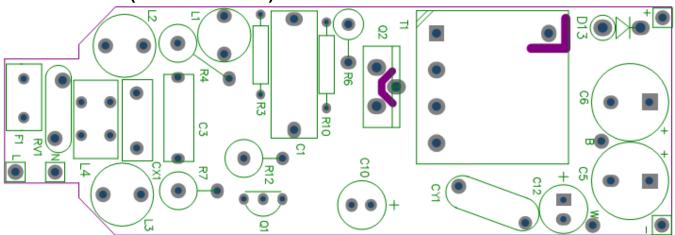



Figure 2—Top Layer

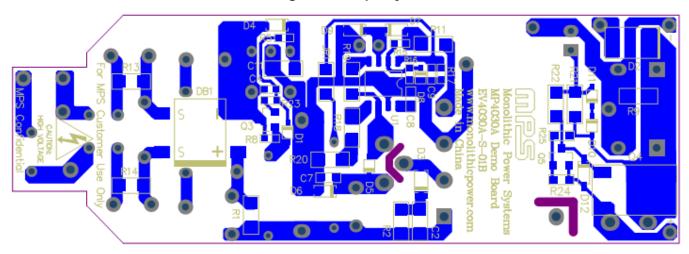



Figure 3—Bottom Layer



### CIRCUIT DESCRIPTION

The EV4030A-S-01B is configured in a singlestage Flyback topology; it uses primary-sidecontrol which can mostly simplify the schematic and get a cost effective BOM. It can also achieve high power factor and accurate LED current.

F1, RV1, L1, L2, L3, L4, R1, R14, R13, CX1, DB1, and C1 compose the input stage. F1 fuses the AC input to protect for the component failure or some excessive short events. RV1 is used for surge test. L1, L2, L3, L4, R1, R14, CX1, R13 and C1 associated with CY1 form the EMI filter which can meet the standard EN55015. The diode rectifier DB1 rectifies the input line voltage. Small bulk CBB capacitor C1 is used for a low impedance path for the primary switching current, to maintain high power factor, the capacitance of C1 should be selected with low value.

R3, R8, R5, R23, C4, C11, D1, D4, Q1, Q3 with R12 compose the damping circuit for reducing the inrush current at the dimmer turning on time. The circuit let the inrush current flow through R12 at first when triac dimmer turns on. Then Q1 turns on and shorts R12, this can save power from R12. Q3 is used to discharge C4 when the triac is off. D4 is used to clamp the gate voltage of Q1 to 15V.

R4. R7. C3 are used as a bleeder circuit which keeping the triac current above the minimum holding current after triac turns on.

R10. R17. C9 provide sine wave reference for the primary peak current to get an active PFC function. The divided voltage should be lower than the max voltage rating of MULT pin.

R11, D7, C10 and D9 are used to supply the power for MP4030A. A 47µF bulk capacitor C10 is selected to maintain the supply voltage. At

start-up, C10 is first charged up through the external MOSFET Q2 and internal charging circuit, when the VCC voltage reaches 10V, the internal charging circuit stops charging and the control logic works. Then the power supply is taken over by the auxiliary winding through R11, D7.

R6, C7, D6 and D5 are used for the gate drive of the external MOSFET Q2.

R15, R16 and D8 are used to detect the auxiliary winding to get the transformer magnetizing current zero crossing signal for realizing the boundary conduction operation, and also monitor the output OVP condition. The OVP voltage is set by the divider ratio of R15, R16.

R18, R20 are primary sensing resistors for primary side current control. The value of R18, R20 set the output LED current. C2, R2, D3 are used to damp the leakage inductance energy so the drain voltage can be suppressed at a safe level.

Diode D2 rectifies the secondary winding voltage and the capacitor C5, C6 are the output filter. The resistor R9 is placed as pre-load to limit the output voltage rise too high in open load condition.

R21, R22, R24, R25, C12, D10, D11, D12, D13, Q4 and Q5 compose the ripple suppressor. R21 and C12 offer a stable drive voltage to Q4. D10 and D11 compose the fast start up circuit, which help charge C12 quickly at the moment power on. R22 and D12 are used to protect the Q4 from Gate-to-Source over voltage damage when SCP happened. R24, R25 and Q5 are used to protect Q4 from over current damage. D13 are used to protect Q5 from Drain-to-Source over voltage damage cause by Q5 when SCP happened.



## **EV4030A-S-01B BILL OF MATERIALS**

| 1 | C1                       | 100nF/630V | Ceramic<br>Capacitor;630V;10%                | DIP         | Fala        | C312J104K63CC30        |
|---|--------------------------|------------|----------------------------------------------|-------------|-------------|------------------------|
| 1 | C2                       | 22nF/630V  | Ceramic<br>Capacitor;630V;X7R;120<br>6       | 1206        | TDK         | C3216X7R2J223K         |
| 1 | C3                       | 100nF/400V | Capacitor;400V;CBB                           | DIP         | Panasonic   | ECQE4104KF             |
| 1 | C4                       | 33nF/50V   | Ceramic<br>Capacitor;50V;X7R;0603<br>;       | 0603        | muRata      | GRM188R71H333KA61<br>D |
| 2 | C5,<br>C6                | 330uF/50V  | Electrolytic Capacitor;50V; Electrolytic;DIP | DIP         | Jianghai    | CD263-50V330           |
| 1 | C7                       | 1uF/25V    | Ceramic<br>Capacitor;25V;X7R;0805            | 0805        | TDK         | C2012X7R1E105K         |
| 1 | C8                       | 2.2uF/10V  | Ceramic<br>Capacitor;10V;X7R;0603            | 0603        | muRata      | GRM188R71A225KE15<br>D |
| 1 | C9                       | 2.2nF/50V  | Ceramic<br>Capacitor;50V;X7R;0603            | 0603        | TDK         | C1608X7R1H222K         |
| 1 | C10                      | 47uF/50V   | Electrolytic Capacitor;50V;                  | DIP         | Jianghai    | CD281L-50V47           |
| 1 | C11                      | 470pF/1kV  | Ceramic<br>Capacitor;1kV;1206                | 1206        | muRata      | GRM31B7U3A471JW31<br>L |
| 2 | C12                      | 22uF/50V   | Electrolytic<br>Capacitor;50V;               | DIP         | Jianghai    | CD281L-50V22           |
| 1 | CX1                      | 22nF/275V  | Capacitor;275V;10%                           | DIP         | Carli       | PX223K3IC39L270D9R     |
| 1 | CY1                      | 2.2nF/4kV  | Capacitor;4000V;20%                          | DIP         | Hongke      | JNK12E222MY02N         |
| 4 | D1,<br>D5,<br>D8,<br>D10 | 1N4148WS   | Diode;75V;0.15A;                             | SOD-<br>323 | Diodes      | 1N4148WS-7-F           |
| 1 | D2                       | MBRS320T3G | Diode;200V;3A                                | SMB         | Qianlongxin | MBRS320T3G             |
| 1 | D3                       | WSGC10MH   | Diode;1000V;1A                               | 1206        | MAXMEGA     | WSGC10MH               |
| 1 | D4                       | BZT52C15   | Zener<br>Diode;15V;5mA/500mW;                | SOD-<br>123 | Diodes      | BZT52C15               |
| 1 | D6                       | BZT52C16   | Zener<br>Diode;16V;5mA/500mW;                | SOD-<br>123 | Diodes      | BZT52C16               |
| 1 | D7                       | BAV21W     | Diode;200V;0.2A;                             | SOD-<br>123 | Diodes      | BAV21W-7-F             |
| 1 | D9                       | BZT52C27   | Zener<br>Diode;27V;5mA/500mW;                | SOD-<br>123 | Diodes      | BZT52C27               |
| 1 | D11                      | BZT52C2V4S | Zener<br>Diode;2.4V;5mA/500mW<br>;           | SOD-<br>323 | Diodes      | BZT52C2V4S             |
| 1 | D12                      | BZT52C4V7  | Zener<br>Diode;4.7V;5mA/500mW<br>;           | SOD-<br>123 | Diodes      | BZT52C4V7              |



# **EV4030A-S-01B BILL OF MATERIALS (continued)**

| 1 | D13            | 1N5375B      | Zener Diode,<br>85V;15mA                 | DIP     | Diodes              | 1N5375B          |
|---|----------------|--------------|------------------------------------------|---------|---------------------|------------------|
| 1 | DB1            | DF06S        | Diode;600V;1.5A                          | SMD     | Fairchild           | DF06S            |
| 1 | F1             | SS-5-2A      | Fuse;250V;2A                             | DIP     | COOPER<br>BUSSMANN  | SS-5-2A          |
| 1 | L1             | 1mH/0.42A    | Inductor;1000uH;<br>2.5 Ohm;0.42A        | DIP     | Wurth               | 744743102        |
| 2 | L2,L3          | 2.2mH/0.3A   | Inductor;1.8mH;<br>4.73 Ohm;0.3A         | DIP     | Wurth               | 7447720222       |
| 1 | L4             | 300uH/1A     | Inductor;300uH;<br>33mOhm;1A             | DIP     | Emei                | TP4U300-00       |
| 1 | Q1             | SSN1N45BTA   | N-Channel<br>Mosfet450V;<br>4250/10V;8.5 | TO-92   | Fairchild           | SSN1N45BTA       |
| 1 | Q2             | CEF04N7G     | Mosfet;700V;4A                           | TO-220F | MAXMEGA             | CEF04N7G         |
| 1 | Q3             | MMBT3906LT1  | Transistor;-40V;-<br>0.2A;               | SOT-23  | ON<br>Semiconductor | MMBT3906LT1      |
| 1 | Q5             | MMBT3904LT1  | Transistor;40V;0.2A;                     | SOT-23  | ON<br>Semiconductor | MMBT3904LT1      |
| 1 | Q4             | EMF65N15A    | N-MOS, 20A, 150V                         | TO-252  | Excelliance<br>MOS  | EMF65N15A        |
| 3 | R1,<br>R13,R14 | 5.1kΩ        | Film<br>Resistor;1%;1/4W                 | 1206    | Yageo               | RC1206FR-075K1L  |
| 1 | R2             | 499kΩ/1206   | Film Resistor;1%;                        | 1206    | Yageo               | RC1206FR-07499KL |
| 2 | R3,<br>R10     | 1MΩ/1%/0.25W | Resistor;1%;1/4W                         | DIP     | any                 | 1M Ohm           |
| 2 | R4,<br>R7      | 510Ω/2W      | Resistor;5%;2W                           | DIP     | any                 | 510 Ohm/2W       |
| 1 | R5             | 10Ω          | Film Resistor;1%;                        | 0603    | Yageo               | RC0603FR-0710RL  |
| 1 | R6             | 470kΩ/1W     | Resistor;5%;1W                           | DIP     | any                 | 100K Ohm         |
| 1 | R8             | 68kΩ/1%      | Film Resistor;1%                         | 0603    | Yageo               | RC0603FR-0768KL  |
| 1 | R9             | 30kΩ/1206    | Resistor;1%                              | 1206    | Royalohm            | 1206F3002T5E     |
| 1 | R11            | 51Ω/1206     | Film Resistor;1%                         | 1206    | Yageo               | RC1206FR-0751RL  |
| 1 | R12            | 330Ω/2W      | Resistor;5%;2W                           | DIP     | any                 | 330 Ohm/ 2W      |
| 1 | R15            | 25.5kΩ/1%    | Film Resistor;1%;                        | 0603    | Yageo               | RC0603FR-0725K5L |
| 1 | R16            | 5.9kΩ/1%     | Film Resistor;1%                         | 0603    | Yageo               | RC0603FR-075K9L  |
| 1 | R17            | 4.12kΩ/1%    | Film Resistor;1%                         | 0603    | Yageo               | RC0603FR-074K12L |
| 1 | R18            | 100mΩ/1%     | Resistor;1%                              | 1206    | CYNTEC              | RL1632H-R100-FN  |
| 1 | R19            | 200Ω/1206    | Resistor;1%                              | 1206    | Yageo               | RC1206FR-07200RL |
| 1 | R20            | 1.5Ω/1%/1206 | Resistor;1%                              | 1206    | Royalohm            | 1206F150KT5E     |
| 1 | R21            | 100kΩ        | Thick Film 5%                            | 1206    | Yageo               | RC1206JR-07100KL |



# **EV4030A-S-01B BILL OF MATERIALS (continued)**

| 1 | R22 | 2kΩ      | Thick Film 1%                                         | 1206  | Royalohm | 1206F2001T5E    |
|---|-----|----------|-------------------------------------------------------|-------|----------|-----------------|
| 1 | R23 | 10kΩ/1%  | Film Resistor;1%                                      | 0603  | Yageo    | RC0603FR-0710KL |
| 1 | R24 | 2kΩ      | Thick Film 1%                                         | 0603  | Yageo    | RC0603FR-072KL  |
| 1 | R25 | 27kΩ     | Thick Film 1%                                         | 0603  | Yageo    | RC0603FR-0727KL |
| 1 | RV1 | TVR10431 | THERMAL R                                             | DIP   | TSK      | TVR10431KSY     |
| 1 | JR1 | Ω0       | Jumper                                                | 1206  | Yageo    | RC1206FR-070RL  |
| 1 | T1  | EF20     | L=2.15mH,<br>Np:Ns:Naux=145:29:19                     | DIP   | Wurth    | 750341840       |
| 1 | U1  | MP4030A  | TRAIC Dimmable,<br>Offline LED Lighting<br>Controller | SOIC8 | MPS      | MP4030AGS-Z     |



## TRANSFORMER SPECIFICATION

## **Electrical Diagram**

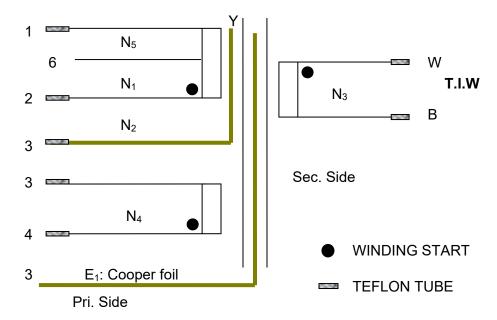



Figure 4—Transformer Electrical Diagram

#### Notes:

- Don't connect Y to any pin of Bobbin.
- W and B are pulled out and marked with different Teflon tube.
- E<sub>1</sub> is one layer of cooper foil applied to core, and connected to PIN3 by a wire.

### Winding Diagram

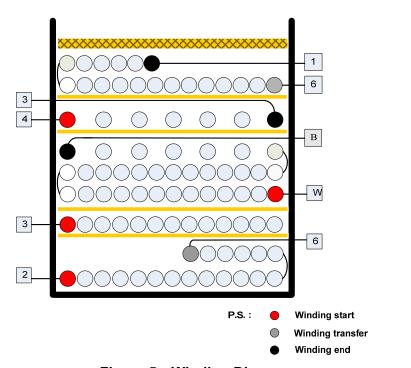



Figure 5—Winding Diagram



## **Winding Order**

| Winding No.    | Tape Layer Number | Start & End | Start & End Magnet Wire⊕(mm) |           |
|----------------|-------------------|-------------|------------------------------|-----------|
| N <sub>1</sub> | 2                 | 2→6         | 2→6 0.18mm * 1               |           |
| $N_2$          | 2                 | 3→Y         | 0.15mm * 1                   | one layer |
| N <sub>3</sub> | 2                 | W→B         | 0.20mm * 2 (T.I.W)           | 29        |
| N <sub>4</sub> | 2                 | 4→3         | 0.18mm * 1                   | 19        |
| N <sub>5</sub> | 3                 | 6→1         | 0.18mm * 1                   | 72        |
| E <sub>1</sub> | 3                 |             | One layer Cooper foil        |           |

# **Electrical Specifications**

|                            | 60 second, 60Hz, from PRI. to SEC.                                   | 2500VAC   |
|----------------------------|----------------------------------------------------------------------|-----------|
| Electrical Strength        | 60 second, 60Hz, from PRI. to CORE.                                  | 1000VAC   |
|                            | 60 second, 60Hz, from SEC. to CORE.                                  | 1000VAC   |
| Primary Inductance         | Pins 1 - 2, all other windings open, measured at 100kHz, 0.1 VRMS    | 2.15mH±8% |
| Primary Leakage Inductance | Pins 1 - 2 with all other pins shorted, measured at 100kHz. 0.1 VRMS | 43µH±10%  |

### **Materials**

| Item | Description                                                                                 |
|------|---------------------------------------------------------------------------------------------|
| 1    | Core: EF20, UI=2500±25%, AL=1540nH/N <sup>2</sup> ±25% GAPPED, SUNSHINE SSP-4 or equivalent |
| 2    | Bobbin: EF20, 4+4PIN RMMOVE PIN6,7 1SECT T375J UL94V-0 HUAXING HX-2004                      |
| 3    | Wire: Ф0.18mm/Ф0.15mm,, UEW, TAI-I ELECTRIC WIRE&CABLE CO.,LTD or equivalent                |
| 4    | Triple Insulation Wire: Φ0.20mm,TRW(B) GREAT LEOFLON INDUSTRIAL CO.,LTD or equivalent       |
| 5    | TFL TUBE: GREAT AWG#18/26/30, CLEAR                                                         |
| 6    | TFL TUBE: GREAT AWG#18 BLACK, CLEAR                                                         |
| 7    | COOPER FOIL: 6.0X0.05mm(TH) DIAN QIANG or equivalent                                        |
| 8    | Tape: 12.5mm(W)×0.06mm(TH)                                                                  |
| 9    | Varnish: JOHN C. DOLPH CO, BC-346A or equivalent                                            |
| 10   | Solder Bar: CHEN NAN: SN99.5/Cu0.5 or equivalent                                            |



## **EVB TEST RESULTS**

## **Performance Data**

## Efficiency, PF and THD

| f (Hz) | Vin(Vac) | Pin(W) | Vo(V) | lo(mA) | Po(W) | Efficiency(%) | PF    | THD(%) |
|--------|----------|--------|-------|--------|-------|---------------|-------|--------|
|        | 185      | 18.61  | 29.32 | 527    | 15.45 | 83.03         | 0.986 | 10.30  |
|        | 190      | 18.58  | 29.32 | 527    | 15.45 | 83.16         | 0.984 | 10.40  |
|        | 200      | 18.53  | 29.32 | 527    | 15.45 | 83.39         | 0.981 | 11.20  |
|        | 210      | 18.49  | 29.32 | 526    | 15.42 | 83.41         | 0.977 | 11.90  |
| 50     | 220      | 18.47  | 29.32 | 526    | 15.42 | 83.50         | 0.973 | 12.10  |
| 30     | 230      | 18.47  | 29.32 | 526    | 15.42 | 83.50         | 0.968 | 12.90  |
|        | 240      | 18.47  | 29.31 | 526    | 15.42 | 83.47         | 0.965 | 13.00  |
|        | 250      | 18.49  | 29.31 | 526    | 15.42 | 83.38         | 0.959 | 13.10  |
|        | 260      | 18.51  | 29.31 | 526    | 15.42 | 83.29         | 0.954 | 13.20  |
|        | 265      | 18.53  | 29.31 | 526    | 15.42 | 83.20         | 0.953 | 13.20  |

## **Dimming Compatibility (No Flicker with these 21 different Dimmers)**

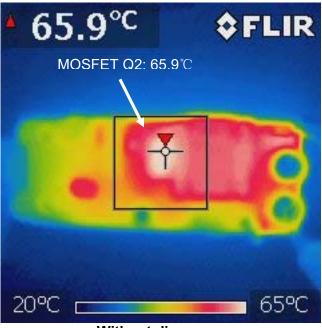
| Manufacturer | Part No.    | Power Stage | Dimming<br>Type | lmax(mA) | Imin(mA) | Dimming ratio |
|--------------|-------------|-------------|-----------------|----------|----------|---------------|
| GIRA         | 0302 00/101 | 60-600W     | Leading         | 533      | 30       | 5.63%         |
| MIKA         | 433/4       | 60-400W     | Leading         | 531      | 91       | 17.14%        |
| Berker       | 283010      | 60-400W     | Leading         | 531      | 43       | 8.10%         |
| JUNG         | 225 NV DE   | 20-500W/VA  | Leading         | 531      | 22       | 4.14%         |
| JUNG         | 225 NV DE   | 20-500W/VA  | Leading         | 532      | 105      | 19.74%        |
| Berker       | 286610      | 20-500W     | Leading         | 531      | 40       | 7.53%         |
| JUNG         | 266 GDE     | 60-600W     | Leading         | 527      | 33       | 6.26%         |
| EMC          | PROP400U    | 40-400W     | Leading         | 531      | 28       | 5.27%         |
| Busch        | 2247U       | 500W/VA     | Leading         | 531      | 50       | 9.42%         |
| Busch        | 2200        | 60-400W     | Leading         | 530      | 54       | 10.19%        |
| Busch        | 6513 U-102  | 420W/VA     | Trailing        | 531      | 50       | 9.42%         |
| Grundtyp     | ET1_53850   | 25~300W     | Trailing        | 445      | 40       | 8.99%         |
| MIKA         | 433 HAB     | 20-315W     | Trailing        | 406      | 46       | 11.33%        |
| MIKA?        | EIM-585     | 20-300W     | Trailing        | 458      | 1        | 0.22%         |
| Busch        | 6591U-101   | 420W/VA     | Trailing        | 462      | 39       | 8.44%         |
| Busch        | 6519U       | 550W/VA     | Trailing        | 527      | 50       | 9.49%         |
| JUNG         | 225 TDE     | 20-525W     | Trailing        | 504      | 44       | 8.73%         |
| SIEMENS      | 5TC8 284    | 20-600W     | Trailing        | 481      | 30       | 6.24%         |
| LICHTREGLER  | T46s        | 20~315W     | Trailing        | 514      | 61       | 11.87%        |
| JUNG         | 254 UDIE 1  | 50-420W/VA  | Trailing        | 527      | 71       | 13.47%        |
| Berker       | 286110      | 50-420W     | Trailing        | 526      | 72       | 13.69%        |



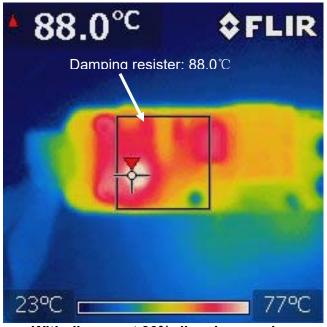
#### **Electric Strength Test**

Primary circuit to secondary circuit electric strength testing was completed according to IEC61347-1 and IEC61347-2-13.

Input and output was shorted respectively. 3750VAC/50Hz sine wave applied between input and output for 1min, and operation was verified.


### **Surge Test**

Line to Line 500V and Line to Power Earth 1kV surge testing was completed according to IEC61547. Input voltage was set at 230VAC/50Hz. Output was loaded at full load and operation was verified following each surge event.

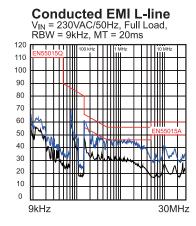

| Surge Level<br>(V) | Input Voltage<br>(VAC) | Injection Location | Injection Phase<br>(°) | Test Result<br>(Pass/Fail) |
|--------------------|------------------------|--------------------|------------------------|----------------------------|
| 500                | 230                    | L to N             | 90                     | Pass                       |
| -500               | 230                    | L to N             | 270                    | Pass                       |
| 1000               | 230                    | L to PE            | 90                     | Pass                       |
| -1000              | 230                    | L to PE            | 270                    | Pass                       |
| 1000               | 230                    | N to PE            | 90                     | Pass                       |
| -1000              | 230                    | N to PE            | 270                    | Pass                       |

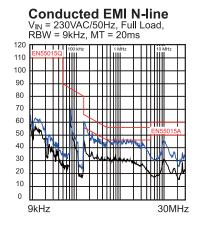
#### **Thermal Test**

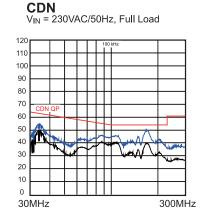
Test without dimmer and with dimmer at 90% dimming on phase.

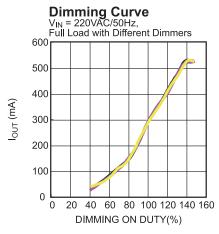


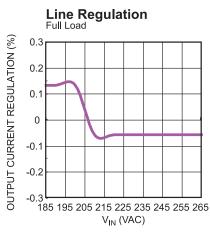
Without dimmer

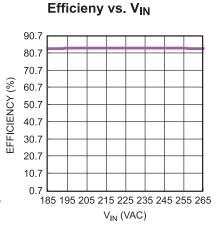


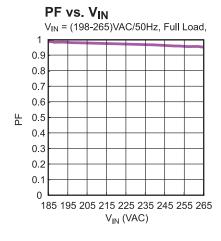


With dimmer at 90% dimming on phase

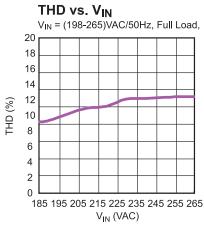




### **EVB TEST RESULTS**


Performance waveforms are tested on the evaluation board. V<sub>IN</sub>=230VAC/50Hz, 9 LEDs in series, I<sub>LED</sub>=520mA, V<sub>OUT</sub>=30V, L<sub>P</sub>=2.15mH, N<sub>P</sub>:N<sub>S</sub>: N<sub>AUX</sub> =145:29:19



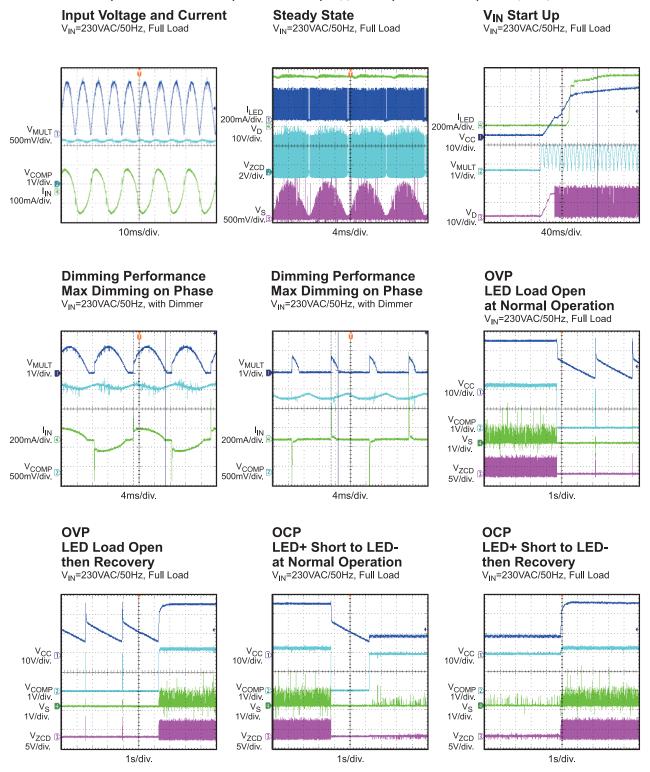














## **EVB TEST RESULTS** (continued)

Performance waveforms are tested on the evaluation board. V<sub>IN</sub>=220VAC/50Hz, 9 LEDs in series, I<sub>LED</sub>=520mA, V<sub>OUT</sub>=30V, L<sub>P</sub>=2.15mH, N<sub>P</sub>:N<sub>S</sub>:N<sub>AUX</sub> =145:29:19.





## **QUICK START GUIDE**

- 1. Preset AC Power Supply to 185VAC ≤ V<sub>IN</sub> ≤265VAC.
- 2. Turn Power Supply off.
- 3. Connect the LED string between "LED+" (anode of LED string) and "LED-" (cathode of LED string).
- 4. Connect Power Supply terminals to AC V<sub>IN</sub> terminals as shown on the board.
- 5. Turn AC Power Supply on after making connections.

Notice: The information in this document is subject to change without notice. Users should warrant and guarantee that thirdparty Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.