

The Future of Analog IC Technology

DESCRIPTION

The MP2669 is a highly integrated, switchmode, battery charge and system power-path management device designed for a single-cell Li-ion or Li-polymer battery for use in a wide range of portable applications.

The IC has different operating modes (charge mode, boost mode, and sleep mode) to allow for management of the system and battery power based on the state of the input and output.

When an input power is present (up to 14V), the device operates in charge mode. The device detects the battery voltage automatically and charges the battery in four phases: trickle current charge, pre-charge, constant current, and constant voltage charge.

The IC has an integrated IN-to-SYS passthrough path to pass the input voltage to the system, even when charging is disabled. The path-through path has high priority over the charging path. The MP2669 manages the input power and meets the priority of the system power demand with the integrated input current and input voltage regulation function.

In the absence of the input source, the MP2669 enters sleep mode to minimize the power dissipation of the battery. If the system load is at SYS, the MP2669 switches to boost mode to power SYS from the battery. When working with the interface IC, the MP2669 can support QC3.0 with output short protection.

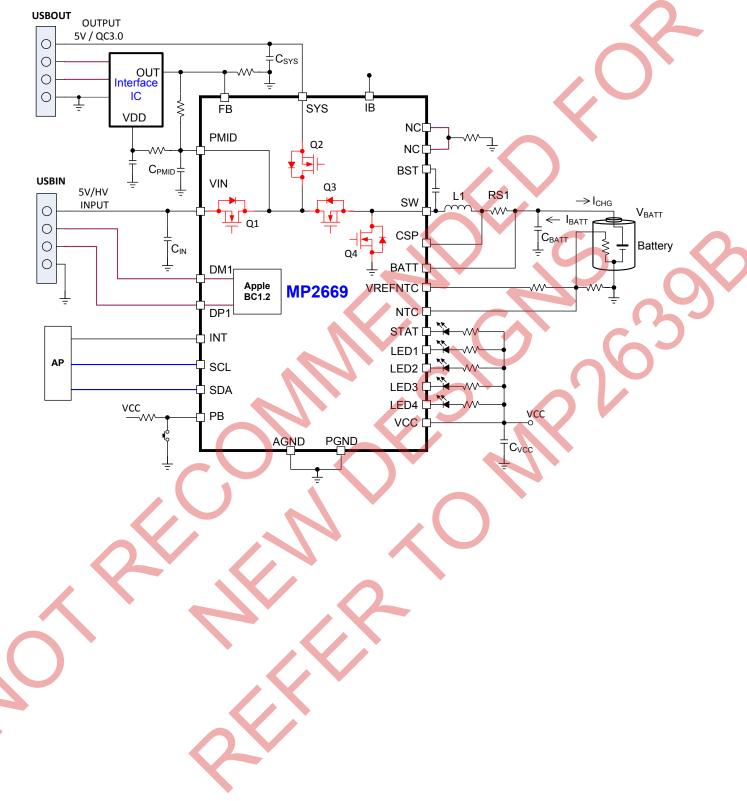
With the I²C interface, the IC can flexibly program the charging and boosting parameters, providing the operation status.

To guarantee safe operation, the IC limits the die temperature to a preset value 120°C (default). The IC also provides other safety features, including input over-voltage protection (OVP), battery OVP, thermal shutdown, and battery temperature monitoring.

MP2669 5A, Battery Charger with 3A Boost System Current and Fast-Charge Capability

FEATURES

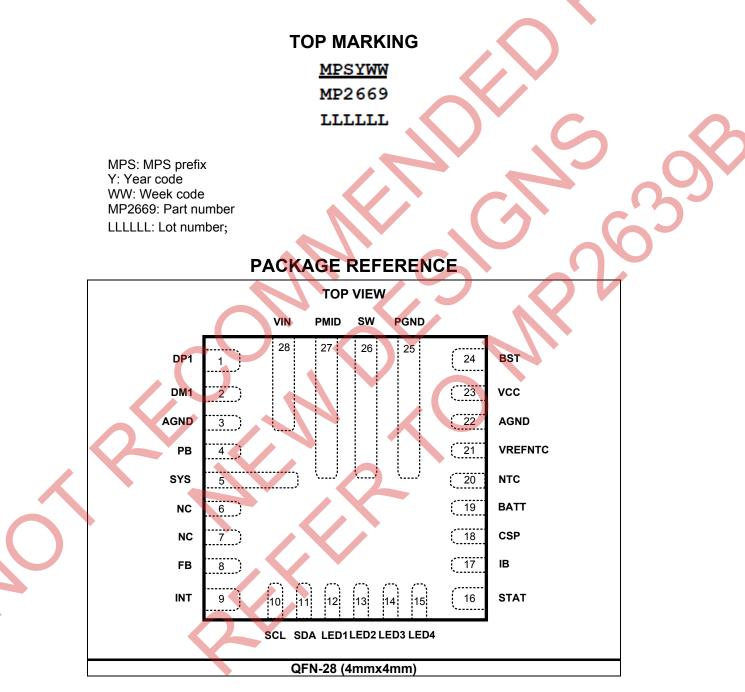
- 4.0V to 14V Operation Voltage Range
- Up to 24V Sustainable Input Voltage
- BC1.2 Detection with I²C Programmable DP1/DM1 Control
- Integrated Input Current-Based and Input Voltage-Based Power Management Functions
- Up to 4.5A Programmable Charge Current
- Reverse Boost Operation Mode with up to 3A Output Current and Adjustable 5V to 14V Output Voltage to Support QC3.0 with an Interface IC that Implements Qualcomm's Quick Charge 3.0 Specification
 Analog Voltage Output IB Pin for Battery Current Monitor
- Programmable 3.1 4.675V Charge Voltage with 0.5% Accuracy
- Four LED Battery Gauge Indicators
- JEITA-Compatible Negative Temperature Coefficient Protection in both Charge and Discharge Mode
- Thermal Regulation and Thermal Shutdown
 USB Output Cable Impedance Compensation
- Integrated Short-Circuit Protection (SCP) for Boost Mode
- Integrated Short-Circuit Protection (SCP) and Over-Voltage Protection (OVP) for Pass-through Path
- Integrated 8-Bit SAR ADC for Battery Voltage Measurement
 - Available in a QFN-28 (4mmx4mm) Package


APPLICATIONS

- Sub-Battery Applications
- Power-Bank Applications for Smartphones, Tablets, and Other Portable Devices

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking	
MP2669GR-xxxx**	QFN-28 (4mmx4mm)	See Below	
EV2669-R-00A	Evaluation Kit (w/ MCU)		

*For Tape & Reel, add suffix -Z (e.g. MP2669GR-0000-Z)

** "xxxx" is the register setting option. The factory default is "0000." This content can be viewed in the I²C Register Map section. For customized options, please contact an MPS FAE to obtain a "xxxx" value.

PIN FUNCTIONS

Package Pin #	Name	I/O	Description
1	DP1	I/O	Positive line of the USB data line pair for BC1.2 detection. Connect a $3M\Omega$ resistor from DP1 to GND.
2	DM1	I/O	Negative line of the USB data line pair for BC1.2 detection. Connect a $3M\Omega$ resistor from DM1 to GND.
3	AGND	Power	Analog ground. Connect AGND to PGND.
4	PB	I	Press button input. A low-to-high edge invokes the boost power output.
5	SYS	Power	System power supply. Place a 1µF ceramic capacitor from SYS to PGND.
6, 7	NC	I/O	No connection. Connect a 1MΩ resistor to GND
8	FB	I	Voltage feedback input in discharge mode.
9	INT	0	Open-drain interrupt output. INT can send the charging status and fault interrupt signal.
10	SCL	I/O	I ² C interface clock. Connect SCL to the logic rail through a 10kΩ resistor.
11	SDA	I/O	I ² C interface data. Connect SDA to the logic rail through a 10kΩ resistor.
12	LED1	0	
13	LED2	0	Battery gauge indicator output. Connect a resistor and an LED in series from
14	LED3	0	LED1-4 to VCC.
15	LED4	0	
16	STAT	0	Indicator for charging operation.
17	IB	о	Battery current representation. The voltage of IB pin indicates the charge current to the battery in charge mode and the discharge current out of the battery in boost mode. Connect an RC filter from IB to AGND to get the proper current information.
18	CSP	I	Positive battery terminal/battery charge current sense negative input.
19	BATT		Battery positive terminal.
20	NTC		Temperature sense input. Connect a negative temperature coefficient thermistor to NTC. Program the hot and cold temperature window with a resistor divider from VREFNTC to NTC to GND. Charging and discharging are suspended when the NTC voltage is out of the normal range.
21	VREFNTC	0	Reference voltage output for powering up NTC.
22	AGND	Power	Analog ground. Connect AGND to pin 3 (AGND).
23	VCC	I	Internal circuit power supply. Bypass VCC to AGND with a 10µF ceramic capacitor. VCC cannot carry a load greater than 30mA.
24	BST	I	Bootstrap. Connect a bootstrap capacitor between BST and SW to form a floating supply across the power switch driver to drive the power switch's gate above the supply voltage.
<mark>2</mark> 5	PGND	Power	Power ground.
26	SW	Power	Switching output node.
27	PMID	Power	Input power mid-point. PMID is connected to the drain of the reverse blocking MOSFET and the drain of the high-side MOSFET internally. Bypass PMID with a ≥47µF ceramic capacitor from PMID to PGND as close to the IC as possible.
28	VIN	Power	Power input of the IC from USB1. Place a ceramic capacitor of at least 22μ F from VIN to PGND as close to the IC as possible. Place a dummy load (i.e.: 1.5k Ω) from VIN to GND.

4

ABSOLUTE MAXIMUM RATINGS (1)

VIN, PMID, SYS to PGND	0
SW to PGND0.3V	(-2V for 20ns) to +24V
BST to PGND	SW to SW + 6V
BATT to PGND	0.3V to +5.3V
All other pins to AGND	0.3V to +6.0V
Continuous power dissipa	tion (T _A = +25°C) ⁽²⁾

	2.8W
Junction temperature	150°C
Lead temperature (solder)	
Storage temperature	65°C to +150°C

Recommended Operating Conditions ⁽³⁾

Supply voltage (VIN)	
I _{IN}	Up to 3A
	Up to 3A
І _{СНБ}	Up to 4.5A
V _{BATT}	Up to 4.5V
V _{SYS}	Up to 20V
Operating junction te	mp. (T _J)40°C to +125°C

Thermal Resistance ⁽⁴⁾ θ_{JA} θ_{JC}

QFN-28 (4mmx4mm)...... 44 9°C/W

NOTES:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)- T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS VIN = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
VIN to PMID switch (Q1) on resistance	R _{IN to} PMID_DS			32		mΩ
PMID to SYS switch (Q2) on resistance	RPMID to SYS_DS			32		mΩ
High-side switch on resistance	RH_DS			18		mΩ
Low-side switch on resistance	RL_DS			8		mΩ
Peak-current limit for high-side switch	I _{PEAK_HS}	Charger CC mode		9.0		А
Peak-current limit for low-side switch	I _{PEAK_LS}	Boost mode		9.5		А
Operating frequency	Fsw			550		kHz
VCC LDO output voltage	Vvcc	VIN = 5V, Ivcc = 100mA	4.35	4.50	4.65	V
VCC UVLO	V _{CC_UVLO}	VCC rising	2.0	2.2	2.4	V
VCC UVLO hysteresis				280		mV
VCC POR for core	VCC_POR	VCC rising		2		
VCC POR hysteresis				150		mV
Charge Mode						
Input quiescent current	lα	VIN > VIN_UVLO, VIN > VBATT, charge enabled, BATT and SYS float		2.3	3.0	mA
Input under-voltage lockout	VIN_ULVO	VIN rising		3.45	3.60	V
Input V _{ULVO} hysteresis		VIN falling		320		mV
VIN vs. V _{BATT} headroom		VIN rising	350	460	570	mV
VIIV VS. VBATT HEAdroom		VIN falling	60	140	210	mV
		5V detected, VIN rising		7		
VIN over-voltage protection	VIN_OVP	9V detected, VIN rising		11		V
		12V detected, VIN rising		14		
VIN over-voltage protection hysteresis		5V detected, VIN rising 9V detected, VIN rising 12V detected, VIN rising		400		mV
System over-current protection threshold	ISYSOCP	12 v detoeted, vitv fiaing	4.0	5.5	6.5	А
System over-current blanking time	TSYSOCBLK			3		ms
System over-current recover time	TSYSRECVR			300		ms

ELECTRICAL CHARACTERISTICS (continued) VIN = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
		5V detected, VIN rising		3.5		
VIN under-voltage detection	VIN_UV	9V detected, VIN rising		7.5		V
-		12V detected, VIN rising		10.5		
		5V detected, VIN rising				
VIN under-voltage detection		9V detected, VIN rising		400		mV
hysteresis		12V detected, VIN rising				
Discharge dummy load at VIN	RIN_DUM			55		Ω
Discharge dummy load at SYS	Rsys_dum			25		Ω
Battery regulation (charge-full) voltage (I ² C)	VBATT_REG	Depends on the I ² C setting	3.1		4.675	V
Charge voltage regulation		Reg04 [7:2] = 101100, V _{BATT_REG} = 4.2V	-0.5		0.5	0/
accuracy		Reg04 [7:2] = 110010, V _{BATT_REG} = 4.35V	-0.5		0.5	%
Constant current charge current (I ² C)	Icc	Depends on the J ² C setting	500		4500	mA
		Reg02 [7:2] = 100011, І _{СНБ} = 4А	-5.0		5.0	%
Charge current regulation accuracy	•	Reg02 [7:2] = 001010, І _{СНБ} = 1.5А	-5.0		5.0	%
		Reg02 [7:2] = 000000, I _{CHG} = 0.5A	-15		15	%
Battery pre-charge threshold	VBATT_PRE	Reg04 [4] = 1, VBATT rising	2.85	3.0	3.15	V
(I ² C)	VBATT_PRE	Reg04 [4] = 0, VBATT rising	2.65	2.8	2.95	
Battery pre-charge hysteresis		VBATT falling		200		mV
Battery short threshold	VBATT_TC	VBATT rising	1.9	2.0	2.1	V
Battery short threshold hysteresis		VBATT falling		250		mV
Trickle charge current	Ітс	$V_{BATT} = 1V, RS1 = 10m\Omega$		100		mA
Pre-charge current (I ² C)	IPRE	Depends on the I ² C setting, RS1 = $10m\Omega$	100		1600	mA
Pre-charge current accuracy	S	Reg03 [7:4] = 0011, I _{PRE} = 400mA, V _{BATT} = 2.6V, RS1 = 10mΩ	-20		20	%
Termination current (I ² C)	ITERM	Depends on the I ² C setting	100		1600	mA
Termination current accuracy		Reg03 [3:0] = 0011, I _{TERM} = 400mA, V _{BATT_REG} = 4.2V, RS1 = 10mΩ	-20		20	%
Recharge threshold below VBATT_REG	VRECH	Reg04 [0] = 1		270		mV

ELECTRICAL CHARACTERISTICS (continued)

VIN = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Voltage and Input Curre	nt Based I	Power Path	· · · · · · · · · · · · · · · · · · ·	·		
		Reg00 [6:3] = 1010, VIN = 5V, V _{IN_REG} = 4.68V	-3		3	%
Input voltage regulation accuracy		Reg00 [6:3] = 1010, VIN = 9V, V _{IN_REG} = 8.60V	-3		3	%
		Reg00 [6:3] = 1010, VIN = 12V, V _{IN_REG} = 11.60V	-3		3	%
		Programmable range	100		3000	_
		Reg00 [2:0] = 001 , SDP	470	535	600	
		Reg00 [2:0] = 010, Apple 1.0	900	1070	1250	
		Reg00 [2:0] = 011, CDP	1420	1610	1800	
Input current limit	Iin_lmt	Reg00 [2:0] = 100, DCP (trim point)	1700	1950	2200	mA
		Reg00 [2:0] = 101, Apple 2.1	2000	2250	2500	
		Reg00 [2:0] = 110, Apple/ Samsung	2300	2550	2800	
		Reg00 [2:0] = 111, Type-C	2900	3200	3500	
Protection						
Battery over-voltage protection	VBATT_OVP	Rising, as a percentage of VBATT_REG		103.5		%
Battery over-voltage protection hysteresis		Falling, as a percentage of VBATT_REG		2		%
Thermal shutdown rising threshold ⁽⁵⁾	T _{J_SHDN}	T _J rising		150		°C
Thermal shutdown hysteresis				20		°C
VREFNTC voltage	VVREFNTC	VIN = 5V, I _{VREFNTC} = 1mA		4.8		V
NTC low temp rising threshold	TCOLD	As a percentage of VVREFNTC	70.4	71	71.6	%
NTC low temp rising threshold hysteresis		As a percentage of VVREFNTC		0.7		%
NTC cool temp rising threshold	TCOOL	As a percentage of VVREFNTC	68.5	69	69.5	%
NTC cool temp rising threshold hysteresis	7	As a percentage of VVREFNTC		0.7		%
NTC warm temp falling threshold	Twarm	As a percentage of VVREFNTC	55.5	56.1	56.7	%
NTC warm temp falling threshold hysteresis		As a percentage of VVREFNTC		1.2		%
NTC hot temp falling threshold	Тнот	As a percentage of VVREFNTC	47.6	48.1	48.6	%
NTC hot temp falling threshold hysteresis		As a percentage of VVREFNTC		1.2		%

ELECTRICAL CHARACTERISTICS (continued)

VIN = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Boost Mode	-					
Standby quiescent current	I _{Q_STB}	VIN < V _{IN_UVLO} , V _{BATT} = 4.2V, boost off (sleep mode)		18	22	μA
Boost quiescent current	Iq_bst	I_{SYS} = 0, V_{PMID} = 5.5V, boost enabled, V_{BATT} = 4.2V		2	3	mA
Feedback voltage			500	515	530	mV
Feedback input current		V _{FB} = 0.52V			200	nA
Boost output voltage accuracy		As percentage of V _{OUT(BST)} , I _{SYS} = 10mA	-2		2	%
Boost output PMID power good		V _{PMID} rising		4.75		V
Boost output under-voltage		VBATT = 3.6V, VPMID falling		3.85		V
protection	Vpmid_bst_ uvlo	V _{BATT} = 4.2V, V _{PMID} falling, higher than V _{BATT}		160	2	mV
		Programmable range	500		3000	
		Reg05 [2:0] = 111, V _{BATT} = 3.7V, 5V output	3000	3300		3
Boost output current limit (I ² C)	IBST_LIMT	Reg05 [2:0] = 101, V _{BATT} = 3.7V, 9V output	2000	2250		mA
		Reg05 [2:0] = 011, V _{BATT} = 3.7V, 12V output	1500	1700		
		During boosting	•	2.5		V
Battery voltage UVLO	VBATT_UVLO	Before boost starts		2.9		V
System no load to turn-off boost automatically	IBST_OFF	Battery current in boost mode, $V_{SYS} = 5V$, $V_{BATT} = 3.7V$	5	35	100	mA
Delay for light load turn-off)	Battery current is below IOFF in boost mode		36		s
		I _{BATT} = 1A		0.4		V
IB voltage output	VIB	Battery current indication tolerance, IBATT = 1A	-5		5	%
DP1/DM1 USB Detection						-
DP1 voltage source	VDP1_SRC	Idp1_src > 250μA	0.5	0.6	0.7	V
DM1 voltage source	VDM1_SRC	Idp2_src > 250μA	0.5	0.6	0.7	V
DP1 pull-up voltage source	V _{DP1_UP}		3	3.3	3.6	V
DM1 pull-up voltage source	VDM1_UP		3	3.3	3.6	V
Data detect voltage	VDAT_REF		0.25	0.325	0.4	V
Data connect detect current source	IDP_SRC		7		13	μA
DM1 pull-down resistance	Rdm_down		14.3	20	24.8	kΩ
DM1 sink current	IDM1_SINK		70	130	170	μA
DP1 sink current	IDP1_SINK		70	130	170	μA
Leakage current input	DP_LKG		-1		1	μA
DP1/DM1	I _{DM_LKG}		-1		1	μA

MP2669 Rev. 1.02 7/26/2019

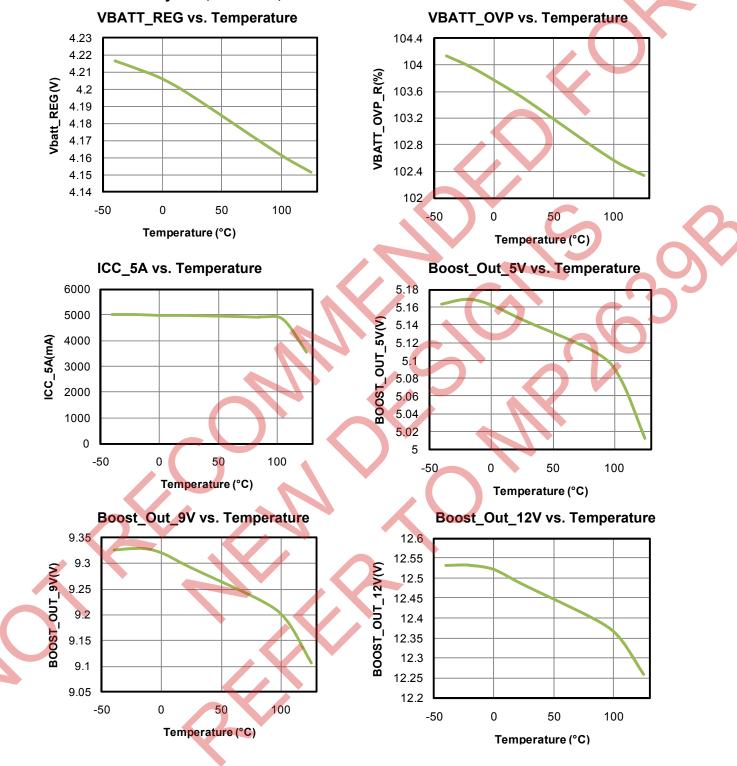
www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2019 MPS. All Rights Reserved.

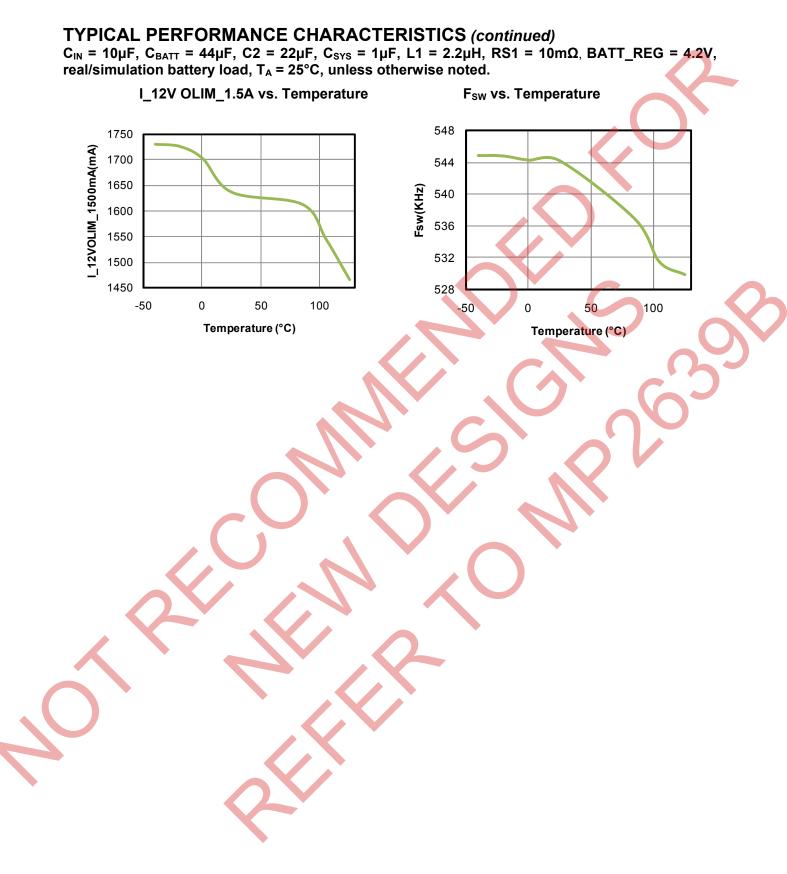
ELECTRICAL CHARACTERISTICS (continued) VIN = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Logic IO Pin Characteristics	-,			- 76		
Low logic voltage threshold	VL				0.4	l v
High logic voltage threshold	V _H		1.3			V
I ² C Interface (SDA, SCL)						
Input high threshold level		V _{PULL_UP} = 1.8V, SDA and SCL	1.3			V
Input low threshold level		V _{PULL_UP} = 1.8V, SDA and SCL			0.4	V
Output low threshold level		I _{SINK} = 5mA			0.4	V
I ² C clock frequency	FSCL				400	kHz
Indication and Logic						
LED1, LED2, LED3, LED4, STAT output low voltage	V _{LED_Low}	Sink 5mA			0.4	V
Press Button (PB)						
PB pull-up resistance	Rpb	PB pulled up to VCC		350		kΩ
PB input logic low voltage	Vl_pb				0.4	V
PB input logic high voltage	Vh_pb		1.2			V
Digital Clock and Watchdog	Timer				C	
Digital clock	F _{DIG1}	VREF LDO enabled		1000		kHz
Watchdog timer	twdt	Reg05h bit[5:4] = 01		40		s
ADC for Battery Voltage						
Effective resolution (current)					8	bits
Conversion time	tsr_conv			20		μs

NOTE:

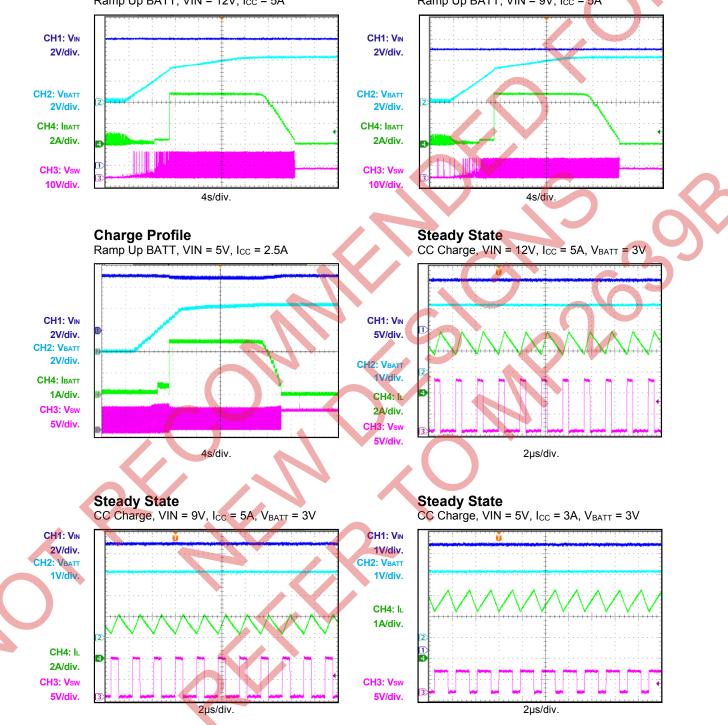

7/26/2019

5) Guaranteed by design.


MPS.

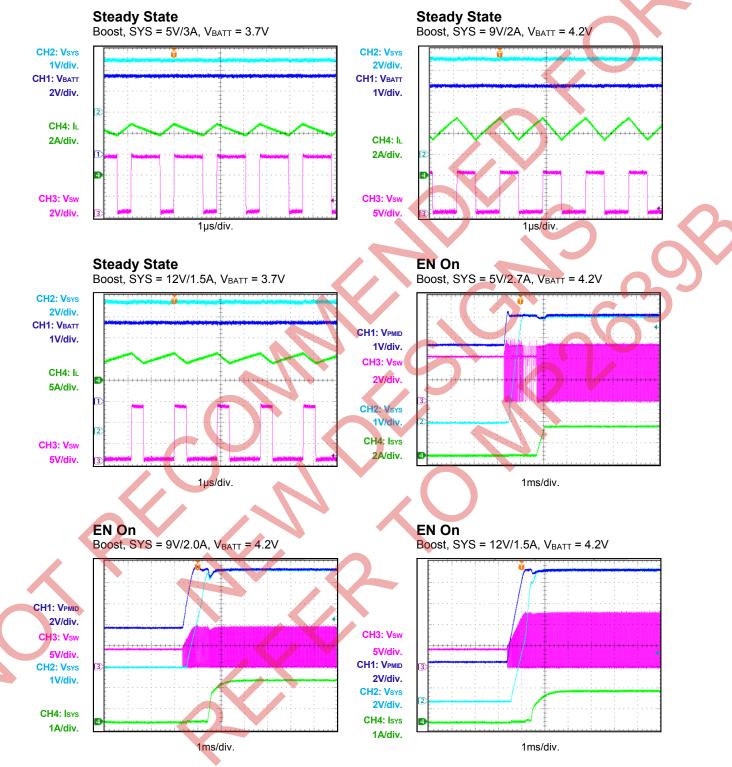
TYPICAL PERFORMANCE CHARACTERISTICS

 $C_{IN} = 10\mu$ F, $C_{BATT} = 44\mu$ F, $C2 = 22\mu$ F, $C_{SYS} = 1\mu$ F, $L1 = 2.2\mu$ H, RS1 = 10m Ω , BATT_REG = 4.2V, real/simulation battery load, $T_A = 25^{\circ}$ C, unless otherwise noted.



MPS'.

TYPICAL PERFORMANCE CHARACTERISTICS (continued) $C_{IN} = 10\mu$ F, $C_{BATT} = 44\mu$ F, $C2 = 22\mu$ F, $C_{SYS} = 1\mu$ F, $L1 = 2.2\mu$ H, $RS1 = 10m\Omega$, $BATT_REG = 4.2V$,
real/simulation battery load, $T_A = 25^{\circ}$ C, unless otherwise noted.Charge Profile
Ramp Up BATT, VIN = 12V, Icc = 5ACharge Profile
Ramp Up BATT, VIN = 12V, Icc = 5A

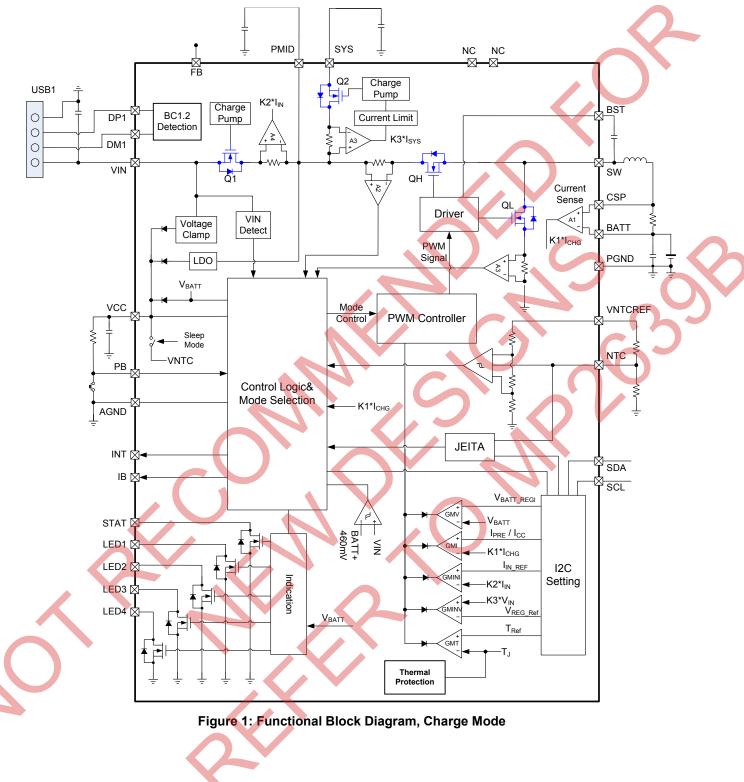


TYPICAL PERFORMANCE CHARACTERISTICS (continued) $C_{IN} = 10\mu F$, $C_{BATT} = 44\mu F$, $C2 = 22\mu F$, $C_{SYS} = 1\mu F$, $L1 = 2.2\mu H$, $RS1 = 10m\Omega$, $BATT_REG = 4.2V$, real/simulation battery load, $T_A = 25^{\circ}C$, unless otherwise noted. **CC Charge Efficiency CV Charge Efficiency** 1 0.95 0.9 Efficiency (%) Efficiency (%) 0.8 0.9 5Vin 3Acharge 5Vin 3Acharge 9Vin 4A charge 9Vin 4A charge 0.7 12Vin 4A charge 12Vin 4A charge 0.85 0.6 2.8 3.3 3.8 4.3 2 3 I_Batt (A) V_Batt (V) Discharge Efficiency @ BATT = 3.7V 0.96 0.93 Efficiency (%) 0.9 0.87 0.84 Vout=5V 0.81 Vout=9V 0.78 Vout=12V 0.75 0.01 0.1 lout (A)

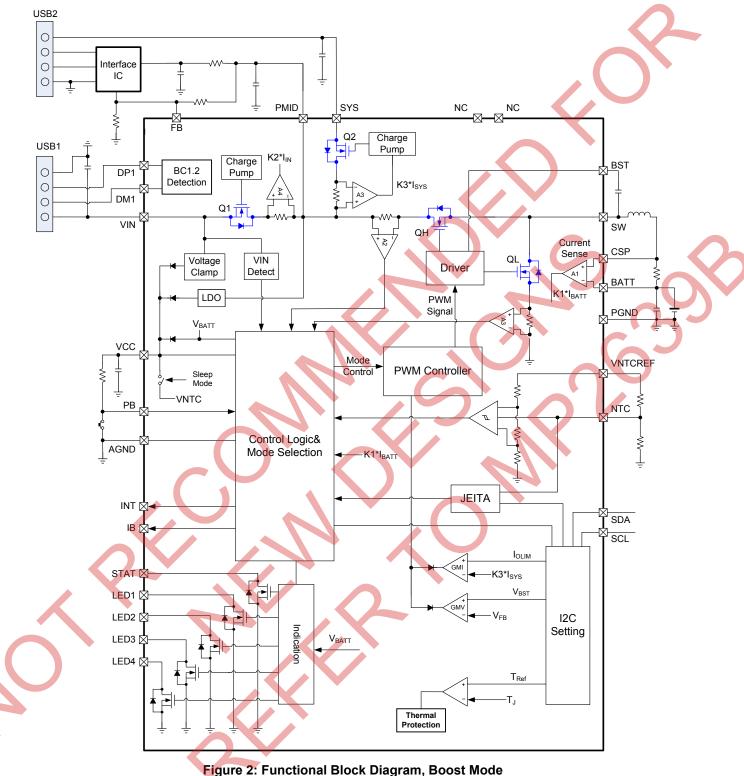
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $C_{IN} = 10\mu$ F, $C_{BATT} = 44\mu$ F, $C2 = 22\mu$ F, $C_{SYS} = 1\mu$ F, $L1 = 2.2\mu$ H, RS1 = $10m\Omega$, real/simulation battery load, $T_A = 25^{\circ}$ C, unless otherwise noted.

MPS.

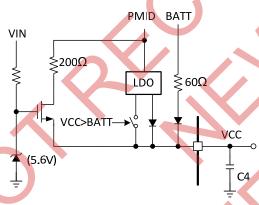

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $C_{IN} = 10\mu$ F, $C_{BATT} = 44\mu$ F, $C2 = 22\mu$ F, $C_{SYS} = 1\mu$ F, $L1 = 2.2\mu$ H, RS1 = $10m\Omega$, real/simulation battery load, $T_A = 25^{\circ}$ C, unless otherwise noted.



BLOCK DIAGRAM

BLOCK DIAGRAM (continued)


OPERATION

The MP2669 is an I²C-controlled synchronous switching charger with bidirectional operation for a boost function that can step up battery voltage to power the system. Depending on the input and output status, the MP2669 operates in one of three modes: charge mode, boost mode, and sleep mode. In charge mode, the IC supports a precision Li-ion or Li-polymer charging system for single-cell applications. In boost mode, the IC boosts the battery voltage to V_{OUT(BST)} in SYS for powering higher voltage systems. In sleep mode, the IC stops charging or boosting and operates at a low current from the input or the battery to reduce power consumption when the IC is not operating. The IC monitors USB1 and USB2 to allow smooth transition between different modes of operation.

Power Supply

The internal bias circuit of the IC is powered from the highest voltage of V_{PMID} and V_{BATT} . When V_{CC} rises above the V_{CC_POR} threshold, the I²C interface is ready for communication, and all registers are reset to the default value. The host can access all of the registers.

The VCC supplies the internal bias circuits as well as the high-side and low-side FET gate drives. The pull-up rail of STAT can also be connected to VCC as well.

Figure 3: VCC Power Supply Circuit

In boost mode, the VCC LDO is enabled once Boost is enabled.

In charge mode, the internal VCC LDO is enabled when the following conditions are valid.

- $V_{PMID} > V_{CC_{POR}}(2V)$
- No Thermal Shutdown

Recommend the VCC load capability is not higher than 30mA.

Input Power Status Indication

The IC qualifies the voltage and current of the input source before start-up. The input source must meet the following requirements:

- $VIN > V_{BATT} + 460mV$
- $VIN > V_{IN}UVLO$

Once the input power source meets the conditions above, the system status register reg08 bit[2] asserts that the input power is sufficient, and BC1.2 detections starts if enabled. Then the step down converter is ready to operate.

These conditions are all monitored continuously. The charge cycle is suspended if one of these conditions exists the limits.

CHARGE MODE OPERATION

Charge Cycle

In charge mode, the IC has five control loops to regulate the input voltage, input current, charge current, charge voltage, and device junction temperature.

When the input power is qualified as a sufficient power supply, the IC checks the battery voltage to provide four main charging phases: trickle charge, pre-charge, constant-current charge, and constant-voltage charge.

- <u>Phase 1 (Trickle Charge)</u>: If the battery voltage is lower than V_{BATT_TC} (2.1V), a trickle-charge current of 100mA is applied to the battery, which helps reset the protection circuit in the battery pack.
 - <u>Phase 2 (Pre-Charge)</u>: When the battery voltage exceeds the V_{BATT_TC} threshold, the IC starts to safely pre-charge the deeply depleted battery until the battery voltage reaches the "pre-charge to fast charge threshold" threshold (V_{BATT_PRE}). The pre-charge current can be programmed via the I²C register reg03 bit[7:4].
- 3. <u>Phase 3 (Constant-Current Charge):</u> When the battery voltage exceeds V_{BATT_PRE} set via reg04 bit[1], the IC enters constant-current charge (fast charge) phase. The fast charge current can be programmable to as high as 4.5A via reg02 bit[7:2].

4. Phase 4 (Constant-Voltage Charge): When the battery voltage rises to the preprogrammable battery regulation (chargefull) voltage (V_{BATT REG}) set via reg04 bit[7:2], the charge current begins to taper off.

TEE

The charge cycle is considered complete when the charge current reaches the battery-full termination threshold (I_{TERM}) set via reg03 bit[3:0], assuming the termination function is enabled via reg05 bit[7].

During the entire charging process, the actual charge current may be less than the register setting due to other loop regulations, such as dynamic power management (DPM) regulation (input current or input voltage loops) or thermal regulation. The thermal regulation reduces the charge current so that the IC junction temperature does not exceed the preset limit. The multiple thermal regulation thresholds from 60°C to 120°C help the system design meet the thermal requirement in different applications. The junction temperature regulation threshold can be set via reg06 bit[1:0].

As shown in Figure 4, a new charge cycle starts when the following conditions are valid:

- The input power has been plugged in again and USB1 is ready. (See Input USB BC1.2 Detection section).
- Battery charging is enabled by the I²C, and CE is forced to a high logic.
- There is no thermistor fault.
- There is no battery over-voltage.

Figure 4: Battery Charge Profile

Automatic Recharge

When the battery is fully charged or charging is terminated, the battery may be discharged because of the system consumption or selfdischarge. When the battery voltage is discharged below the recharge threshold (programmable via reg04 bit[0]), the IC begins a

new charging cycle automatically without having to restart a charging cycle manually if the input power is valid. The I²C is enabled if the charge operation reg0B bit[5] = 1.

Battery Over-Voltage Protection (OVP)

The IC has battery over-voltage protection (OVP). If the battery voltage exceeds the battery over-voltage threshold (103.3% of the battery regulation voltage), charging is disabled. Under this condition, an internal current source draws a current from BATT to decrease the battery voltage and protect the battery.

When battery OVP occurs, only the charging is disabled. The pass-through path is still on.

Indication

Apart from multiple status bits designed in the I²C register, the IC also has a hardware status output pin (STAT). The status of STAT in various cases is shown in Table 1.

Table 1: Operation Indications

Charging State	STAT
Charging	Low
Charging complete, sleep mode, charge disable	High
Charging suspended	Blinking at 1Hz
Battery float	Blinking at 1Hz

Input Voltage-Based and Input Current-Based Power Management

To meet the maximum current limit in the USB specification and avoid overloading the adapter. the IC features both the input current and input voltage power management by monitoring the input current and input voltage continuously. The total input current limit can be programmable in the IC to prevent the input source from being overloaded. When the input current reaches the limit, the charge current tapers off to keep the input current from increasing further.

If the preset input current limit is higher than the rating of the adapter, the back-up input voltagebased power management also works to prevent the input source from being overloaded. When the input voltage falls below the input voltage regulation point due to the heavy load, the charge current is also reduced to keep the input voltage from dropping further.

System Over-Current Protection (OCP)

TEC

The IC also features a system over-current threshold (OCP) in the charge mode. If the current still exceeds the OCP current (4.5A) after 3ms of blanking time, Q2 turns off. A fast-off function turns off Q2 quickly when the system current exceeds 8A. After 300ms, the Q2 turns on again to check if the OCP has been removed or not.

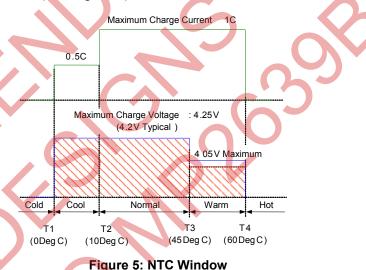
Negative Temperature Coefficient (NTC) Thermistor

Thermistor is the generic name given to thermally sensitive resistors. A negative temperature coefficient (NTC) thermistor is called a thermistor. Depending on the manufacturing method and the structure, different shapes and characteristics can be used for various purposes. The thermistor resistance values are classified at a standard temperature of 25°C unless otherwise specified. The resistance of a temperature is solely a function of its absolute temperature. Refer to the thermistor's datasheet for details. The relationship of the resistance and the absolute temperature of a thermistor is shown in Equation (1):

$$\mathbf{R}_{1} = \mathbf{R}_{2} \cdot \mathbf{e}^{\beta \cdot \left(\frac{1}{\mathsf{T1}} + \frac{1}{\mathsf{T2}}\right)} \tag{1}$$

Where R1 is the resistance at absolute temperature T1, R2 is the resistance at absolute temperature T2, and β is a constant that depends on the material of the thermistor.

The IC monitors the battery's temperature continuously by measuring the voltage at NTC. This voltage is determined by the resistor divider whose ratio is produced by a different resistance of the NTC thermistor under different ambient temperatures of the battery.


The IC sets a pre-determined upper and lower bound of the range internally. If the voltage at NTC exits this range, then the temperature is outside the safe operating limit. At this time, charging stops unless the operating temperature returns to the safe range.

To satisfy the JEITA requirement, the IC monitors four temperature thresholds: the cold battery threshold ($T_{NTC} < 0^{\circ}C$), the cool battery threshold ($0^{\circ}C < T_{NTC} < 10^{\circ}C$), the warm battery

threshold (45°C < T_{NTC} < 60°C), and the hot battery threshold (T_{NTC} > 60°C). For a given NTC thermistor, these temperatures correspond to V_{COLD}, V_{COOL}, V_{WARM}, and V_{HOT}.

When $V_{NTC} < V_{HOT}$ or $V_{NTC} > V_{COLD}$, the charging is suspended. When $V_{HOT} < V_{NTC} < V_{WARM}$, the battery regulation voltage (V_{BATT_REG}) is reduced by 150mV compared to the programmable threshold. When $V_{COOL} < V_{NTC} < V_{COLD}$, the charging current is reduced to half of the programmable charge current.

NTC protection can be disabled via reg07 bit[3]. When reg07 bit[3] is set to 0, the NTC is disabled, and VREFNTC is disconnected from VCC (see Figure 5).

Figure 5. NTC Windo

Input USB BC1.2 Detection

The USB ports in personal computers are convenient places for portable devices (PDs) to draw current for battery charging. If the portable device is attached to a USB host of the hub, then the USB specification requires the portable device to draw limited current (500mA in SCP, and 1800mA in DCP).

The IC's input source detection is compatible with the Battery Charging Specification Revision 1.2 (BC1.2) for programming the input current limit during default mode. Users can program DP1/DM1 for proprietary charger detection in host mode by writing reg0B.

When the input source is plugged in, the input current limit begins with 100mA, and the IC starts DP1/DM1 detection.

mps.

The DP1/DM1 detection has two steps: data contact detection (DCD) and primary detection.

DCD uses a current source to detect when the data pins have made contact upon attachment. The protocol for DCD is as follows:

- Power device (PD) is asserted.
- The MP2669 turns on DP1, I_{DP_SRC}, and the DM1 pull-down resistor for 40ms.
- The MP2669 waits for the DP1 line to be low.
- The MP2669 turns off the I_{DP_SRC} and DM1 pull-down resistor when the DP1 line is detected low or the 300ms timer is expired.

DCD allows the PD to begin primary detection once the data pins have made contact. Once the data contact is detected, the IC jumps to the primary detection immediately. If the data contact is not detected, the IC also jumps to the primary detection after 300ms automatically from the beginning of the DCD.

The primary detection is used to distinguish between the USB host (or SDP) and different types of charging ports.

During primary detection, the MP2669 turns on V_{DP_SRC} on DP1 and I_{DM_SINK} on DM1. If the PD is attached to a USB host, DM1 is low. If the PD is attached to CDP, DCP, or another dedicated charging port, DM1 remains high.

Table 2: Input Current Limit vs. USB Type

DP1/DM1 Detection	Reg0F [3:0]
APPLE 1A	0010
APPLE 2.1A	0011
APPLE 2.4A	0100
SDP	0101
CDP	0110
DCP	0111
Proprietary	1000
Charger	1001
onargoi	1010

Table 2 asserts the USB port type in reg0F bit[3:0]. The host is able to revise the input current limit as well by modifying reg00 bit[2:0].

Separate Pull-up Pin (VREFNTC) for NTC Protection

A separate pull-up pin (VREFNTC) is designed for the internal pull-up terminal of the resistive divider for the NTC comparator. VREFNTC monitors the battery temperature in both charge mode and discharge mode. When reg07 bit[3] is set to 0, VREFNTC is disconnected from VCC.

Interrupt to Host (INT)

The IC also has an alert mechanism which can output an interrupt signal via INT to notify the system in the operation by outputting a 400µs low-state INT pulse. The INT output can be triggered by:

- Good input source detected
- Charge is enabled
- Pre-charge to CC charge
- Charge done
- Battery short
- VIN or IN PPM
- Any fault in REG09

When any fault occurs, the charger device sends out INT, and the IC always records the latest fault state in reg09, whether the host reads the fault register or not.

The INT output is designed as an open-drain structure and needs an external pull-up voltage source in real operation.

Thermal Regulation and Thermal Shutdown in Charge Mode

The IC monitors the internal junction temperature continuously to maximize power delivery and avoid overheating the chip. When the internal junction temperature reaches the preset limit, the IC starts to reduce the charge current to prevent higher power dissipation. When the junction temperature reaches 150°C, the pulse-width modulation (PWM) step-down converter is shutdown.

Battery Current Analog Output

The IC has an IB pin to obtain a real-time battery current value in both charge and boost mode. The voltage at IB is a fraction of the charge current that indicates the charge current flowing into the battery during charge mode and the charge current flowing out of the battery in boost mode. The IB voltage can be calculated with Equation (2):

$$V_{IB} = I_{BATT} \times 0.4(V)$$
 (2)

Impedance Compensation to Accelerate Charging

In the entire charging cycle, the constantvoltage charging stage occupies larger ratios. To accelerate the charging cycle, it is better to have the charging remain at a constant-current charge stage for as long as possible.

The IC allows the intrinsic resistance to be compensated through reg06 bit[7:5] of the battery by adjusting the charge-full voltage threshold according to the charge current and internal resistance. In addition, a maximum allowed regulated voltage reg06 bit[4:2] is also set for the sake of the safety condition. Calculate this voltage with Equation (3):

 $V_{\text{BATT_TERM}} = V_{\text{BATT_REG}} + Min(I_{\text{CHG_ACT}} \times R_{\text{BAT_CMP}}, V_{\text{CLAMP}})(3)$

Where $V_{BATT_{TERM}}$ is the battery compensated voltage, $V_{BATT_{REG}}$ is the battery regulation (charge-full) voltage set via the l²C reg04 bit[7:2], and $I_{CHG_{ACT}}$ is the real-time charge current during the operation.

BOOST MODE OPERATION

The IC is able to supply a regulated 5 - 12V output at SYS for powering the system. The IC does not enter boost mode if the battery is below the weak battery threshold to ensure that the battery is not drained. To enable boost mode, VIN must be below 1V. The boost output current limit can be selected as 500mA - 3A via the I²C (reg05 bit[2:0]). During boost mode, the status register reg08 bit[7:6] is set to 11.

Boost operation is enabled only when the following conditions are valid:

- $V_{BATT} > V_{BATT_UVLO} (2.9V)$
- VIN < 1V
- Reg0Dh bit[6] = 0

Once boost is enabled, the IC boosts the PMID to 5.2V first. The block MOSFET (Q2) is regulated linearly with the current limit of I_{OLIM} . When V_{SYS} is charged higher than 4.75V within 3ms, Q2 is fully turned on. Otherwise, Q2 is turned off and attempts to turn on again after 300ms.

In boost mode, the IC employs a fixed 550kHz PWM step-up switching regulator. The IC switches from PWM operation to pulse-skipping operation at light load.

Battery UVLO Protection

During boost operation, once the battery voltage is lower than 2.5V, the boost is latched off, and reg0Dh bit[6] is set to 1. Once the battery is charged again, and V_{BATT} is higher than 2.9V, reg0Dh bit[6] is reset to 0.

Boost Over-Current Limit and Short-Circuit Protection

In normal boost operation, the MP2669 always monitors the current flowing through Q2. When the boost output current exceeds the boost output current limit set via reg05 bit[2:0], the output current loop takes control, and the boost output voltage drops. When VSYS drops below the lower value of 4V or VBATT + 200mV, Q2 is turned off. After 300ms, Q2 turns on again. If V_{SYS} rises higher than 4.75V within 3ms, Q2 is fully on. Otherwise, Q2 is turned off again.

Automatic Off at Light Load

The boost turn off automatically if the load current flowing out from SYS is below 35mA for 36 seconds.

USB1 and USB2 Interaction

The IC supports USB1 and USB2 working at the same time. Boost is disabled when VIN is greater than 1V.

Thermal Shutdown Protection in Boost Mode

The thermal shutdown protection is also active in boost mode. Once the junction temperature rises higher than 150°C, the IC enters thermal shutdown. The IC resumes normal operation when the junction temperature drops below 120°C.

Boost Output Voltage Setting

The boost output voltage is set by the external resistor divider from PMID to FB to GND (refer to the Typical Application Circuits).

Impedance Compensation for Boost Output

The IC allows the intrinsic resistance of Q2 and the USB2 output wire voltage drop to be compensated by adjusting the boost output voltage according to the system load current. Additionally, a maximum allowed regulated voltage is also set for the safety condition. Calculate $V_{BST_{SYS}}$ with Equation (4):

 $V_{BST_{SYS}} = V_{OUT(BST)} + (I_{SYS} \times R_{SYS_{COMP}}) \quad (4)$

Where V_{BST_SYS} is the boost regulation voltage, $V_{OUT(BST)}$ is the system boost voltage set via the I²C. I_{SYS} is the real-time system load current during the operation. R_{SYS_COMP} is the line resistance compensation setting in reg01 bit[3:1].

LED Drivers for Voltage-Based Battery

IIFC

The IC provides four LED drivers for voltagebased fuel gauge indication. When USB1 is plugged in, LED1 - LEDx are on with the highest bit blinking. When USB2 is plugged in and boost is enabled, LED1 - LEDx are blinking until the boost is turned off (see Table 4).

The LEDx indication also can be controlled by the host. The host determines LED1 - LEDx on/off according to the battery voltage result in reg12 and sends a control command to reg13 bit[3:0]. During the voltage measurement, the battery impedance should be compensated via the I²C reg06 bit[7:5] based on the battery current to get a precise battery voltage.

	1 dbio					
Mode	VBATT	SOC	LED1	LED2	LED3	LED4
	V _{BATT} < 3.6V	<25%	Flash	Off	Off	Off
	[3.6V, 3.8V)	[25%, 50%)	On	Flash	Off	Off
Charging	[3.8V, 4.0V)	[50%, 75%)	On	On	Flash	Off
	CV mode,[4.0V, 4.2V), Not terminated	[75%, 100%)	On	On	On	Flash
	$V_{BATT} \ge 4.0$, terminated	100%	On	On	On	On
	V _{BATT} ≥ 4.05V	>75%	Flash	Flash	Flash	Flash
Discharging	[3.85V, 4.05V)	[50%, 75%)	Flash	Flash	Flash	Off
(All off after 5s)	[3.65V, 3.85V)	[25%, 50%)	Flash	Flash	Flash	Off
	[Vbat_ulvo, 3.65V)	[0%, 25%)	Flash	Off	Off	Off
	<vbat_ulvo< td=""><td>[0%, 5%)</td><td>Off</td><td>Off</td><td>Off</td><td>Off</td></vbat_ulvo<>	[0%, 5%)	Off	Off	Off	Off

Table 4: LED Indication Table

PB Control

PB is used to control the enable function of boost mode. A low-to-high rising edge wakes up the device and the boost.

ADC for Battery Voltage

The IC has an integrated analog-digital converter (ADC), which provides the battery voltage with instantaneous measurements in reg12 bit[7:0] that can be used by the battery voltage to customize fuel gauge (FG) indication.

Sleep Mode Operation

When the input power source is missing and boost is disabled, the IC enters sleep mode. During sleep mode, all MOSFETs are turned off to minimize the leakage current and extend the battery run time.

Series Interface

The IC uses an I²C-compatible interface for flexible charging parameter setting and instantaneous device status reporting. The I²CTM is a bidirectional, 2-wire, serial interface. Only two bus lines are required: a serial data line (SDA) and serial clock line (SCL).

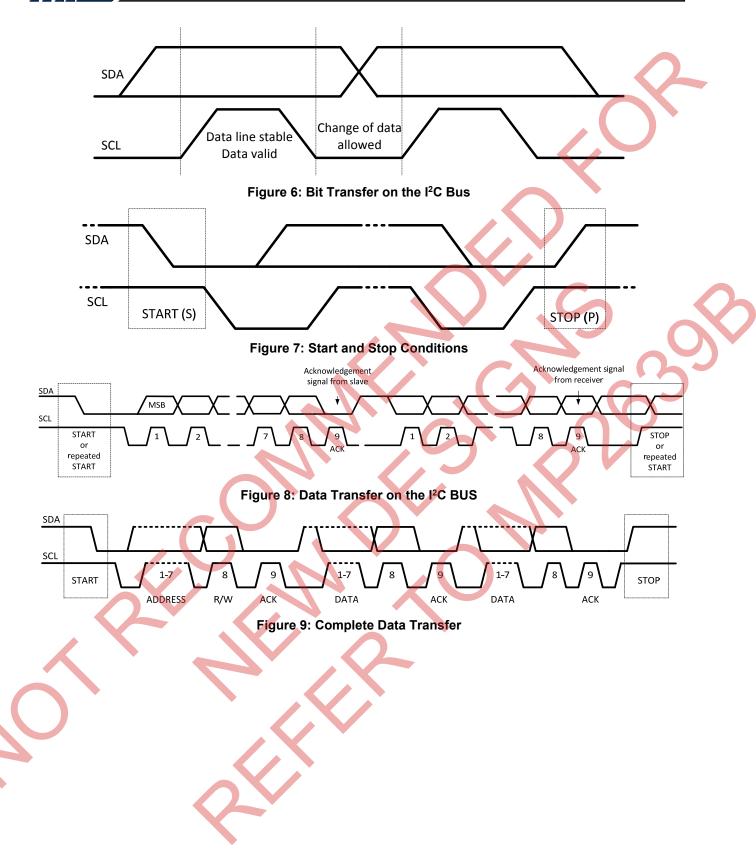
The I²C interface supports both standard mode (up to 100kbits) and fast mode (up to 400kbits).

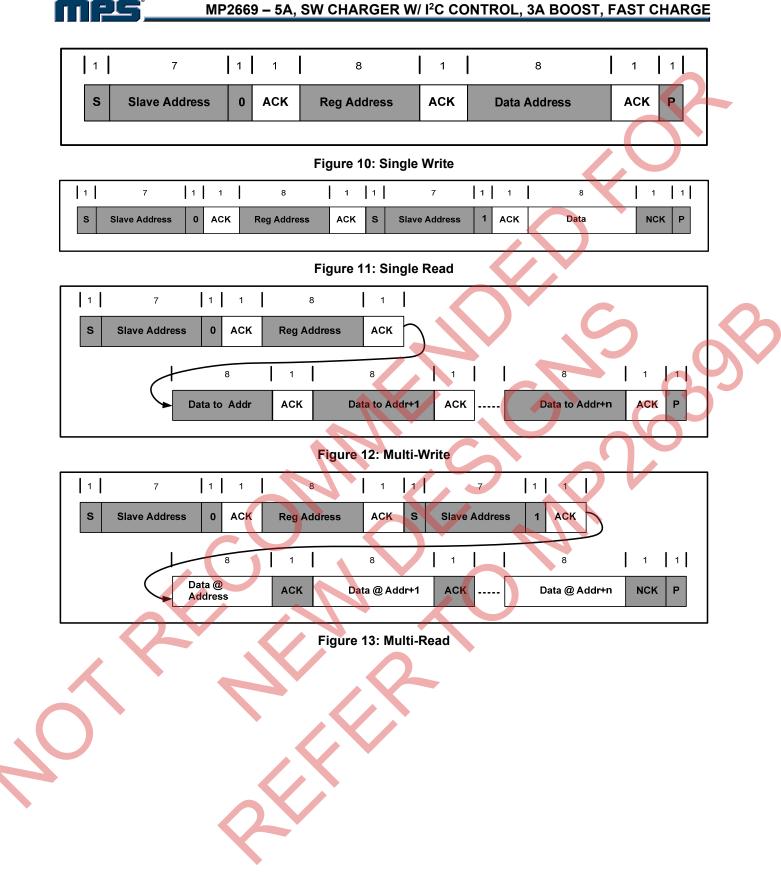
Both SDA and SCL are bidirectional lines, connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines are high. SDA and SCL are both open-drain outputs.

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low. One clock pulse is generated for each data bit transferred.

All transactions begin with a start (S) condition and can be terminated by a stop (P) condition. Start is defined as a high-to-low transition on the SDA line while SCL is high. Stop is defined as a low-to-high transition on the SDA line when the SCL is high. Start and stop conditions are always generated by the master. The bus is considered busy after the start condition and free after the STOP condition. Every byte on the SDA line must be eight bits long. The number of bytes to be transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed another function, the clock line SCL can be held low to force the master into a wait state (clock stretching). Data transfer then continues when the slave is ready for another byte of data and releases the clock line SCL.

The acknowledge bit takes place after every byte. The acknowledge bit allows the receiver to signal to the transmitter that the byte was received successfully and another byte may be sent. All clock pulses, including the ninth clock pulse (acknowledge), are generated by the master.


The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line low and remains high during the ninth clock pulse. This is the "not acknowledge" signal. The master can then generate either a stop to abort the transfer or a repeated start to begin a new transfer.


After the start, a slave address is sent. This address is seven bits long followed by an eighth data direction bit (r/w). A zero indicates a transmission (write), and a one indicates a request for data (read).

If the register address is not defined, the charger IC sends back NACK and returns to the idle state.

mps

MP2669 - 5A, SW CHARGER W/ I²C CONTROL, 3A BOOST, FAST CHARGE

APPLICATION INFORMATION

NTC Function in Charge Mode

Figure 14 shows that an internal resistor divider sets the low temperature threshold (V_{COLD}) and high temperature threshold (V_{HOT}) at 71% x $V_{VREFNTC}$ and 48.1% x $V_{VREFNTC}$ respectively. For a given NTC thermistor, an appropriate R_{T1} and R_{T2} to set the NTC window can be calculated with Equation (5) and Equation (6):

$$\frac{V_{COLD}}{V_{VREFNTC}} = \frac{R_{T2} //R_{NTC_COLD}}{R_{T1} + R_{T2} //R_{NTC_COLD}} = T_{COLD} = 71\%$$
 (5)

 $\frac{V_{\text{HOT}}}{V_{\text{VREFNTC}}} = \frac{R_{\text{T2}} \, / / R_{\text{NTC}_\text{HOT}}}{R_{\text{T1}} + R_{\text{T2}} \, / / R_{\text{NTC}_\text{HOT}}} = T_{\text{HOT}} = 48.1\% \quad \textbf{(6)}$

Where R_{NTC_HOT} is the value of the NTC resistor at the upper bound of its operating temperature range, and R_{NTC_COLD} is its lower bound.

The two resistors, R_{T1} and R_{T2} , determine the upper and lower temperature limits independently. This flexibility allows the MP2636 to operate with most NTC resistors for different temperature range requirements. Calculate R_{T1} and R_{T2} with Equation (7) and Equation (8):

$$R_{T1} = \frac{R_{NTC_HOT} \times R_{NTC_COLD} \times (T_{COLD} - T_{HOT})}{T_{COLD} \times T_{HOT} \times (R_{NTC_COLD} - R_{NTC_HOT})}$$
(7)

 $R_{T_{2}} = \frac{R_{NTC_HOT} \times R_{NTC_COLD} \times (T_{COLD} - T_{HOT})}{T_{HOT} \times (1 - T_{COLD}) \times R_{NTC_COLD} - T_{COLD} \times (1 - T_{HOT}) \times R_{NTC_HOT}}$ (8)

For example, the NCP18XH103 thermistor has the following electrical characteristics:

- At 0°C, R_{NTC_Cold} = 27.22kΩ
- At 50°C, R_{NTC_Hot} = 4.16kΩ

Based on Equation (7) and Equation (8), $R_{T1} = 3.29 k\Omega$ and $R_{T2} = 11.46 k\Omega$ are suitable for an NTC window between 0°C and 50°C. Choose approximate values, such as $R_{T1} = 3.32 k\Omega$ and $R_{T2} = 11.5 k\Omega$.

If no external NTC is available, connect R_{T1} and R_{T2} to keep the voltage on NTC within the valid NTC window (e.g.: $R_{T2} = 10k\Omega$, $R_{T1} = 5.1k\Omega$).

For convenience, an NTC thermistor design spreadsheet is available. Please contact MPS for more information.

Selecting the Inductor

Inductor selection is a trade-off between cost, size, and efficiency. A lower inductance value corresponds with smaller size but results in higher current ripple, higher magnetic hysteretic losses, and higher output capacitances. However, a higher inductance value benefits from lower ripple current and smaller output filter capacitors, but results in higher inductor DC resistance (DCR) loss. Choose an inductor that does not saturate under the worst-case load condition.

When the MP2669 works in charge mode (as a buck converter), estimate the required inductance with Equation (9):

$$= \frac{V_{IN} - V_{BATT}}{\Delta I_{L}} \times \frac{V_{BATT}}{V_{IN} \times f_{SW}}$$

(9)

Where V_{IN} is the typical input voltage, V_{BATT} is the CC charge threshold, f_{SW} is the switching frequency, ΔI_{L_MAX} is the maximum peak-topeak inductor current, which is usually designed at 30 - 40% of the CC charge current.

For a typical input voltage with a 35% inductor current ripple at the corner point between the trickle charge and CC charge ($V_{BATT} = 3V$), the inductance can be derived from Table 3.

 Table 3: Inductance Value

VIN (V)	Існд (А)	L (µH)
5	3	2.2
9	4	3.0
12	4	3.6

When the MP2669 is in boost mode (as a boost converter), the required inductance value can be calculated with Equation (10), Equation (11), and Equation (12):

$$L = \frac{V_{BATT} \times (V_{SYS} - V_{BATT})}{V_{SYS} \times f_{SW} \times \Delta I_{L-MAX}}$$
(10)

$$\Delta I_{L_{MAX}} = 30\% \times I_{BATT(MAX)}$$
(11)

$$I_{\text{BATT}(\text{MAX})} = \frac{V_{\text{SYS}} \times I_{\text{SYS}(\text{MAX})}}{V_{\text{BATT}} \times \eta} \tag{12}$$

Where V_{BATT} is the minimum battery voltage, f_{SW} is the switching frequency, ΔI_{L_MAX} is the peakto-peak inductor ripple current, which is

approximately 30% of the maximum battery current ($I_{BATT(MAX)}$), $I_{SYS(MAX)}$ is the system current, and η is the efficiency.

In the worst-case scenario where the battery voltage is 3V with a 30% inductor current ripple, the inductance vs. the typical system voltage ($V_{SYS} = V_{PMID}$) can be derived from Table 4, assuming the efficiency is 90%.

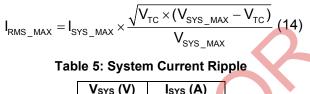
Table 4: Inductance vs. Typical System Voltage

V _{SYS} (V)	I _{SYS} (A)	L (µH)
5	3	1.3
9	2	1.8
12	1.5	2.0

For higher efficiency, select a 2.2μ H inductor and minimize the inductor's DC resistance. Use an inductor with a DC current rating no lower than the peak current of the MOSFET.

Selecting the Input Capacitor (CIN)

The input capacitor (C_{IN}) reduces both the surge current drawn from the input and the switching noise from the device. The input capacitor impedance at the switching frequency should be less than the input source impedance to prevent high frequency switching current from passing to the input. For best results, use ceramic capacitors with X7R dielectrics because of their low ESR and small temperature coefficients. For most applications, a 22µF capacitor is sufficient.


Selecting the System Capacitor (CPMID)

Select C_{PMID} based on the demand of the system current ripple.

In charge mode, the capacitor (C_{PMID}) acts as the input capacitor of the buck converter. The input current ripple can be calculated with Equation (13):

$$I_{\text{IN}_{\text{RMS}}} = I_{\text{CHG}_{\text{MAX}}} \times \frac{\sqrt{V_{\text{TC}} \times (V_{\text{IN}_{\text{MAX}}} - V_{\text{TC}})}}{V_{\text{IN}_{\text{MAX}}}}$$
(13)

In boost mode, the capacitor (C_{PMID}) is the output capacitor of the boost converter, C_{PMID} keeps the system voltage ripple small and ensures feedback loop stability. The system current ripple can be calculated with Table 5 and Equation (14):

V _{SYS} (V)	Isys (A)	
5	3	
9	2	
12	1.5	

Since the input voltage passes to the system directly, $V_{IN_MAX} = V_{PMID_MAX}$, and both charge mode and boost mode have the same system current ripple.

The maximum ripple current is about 1A. Select the PMID capacitors based on the ripple current temperature rise not exceeding 10°C. For best results, use ceramic capacitors with X7R dielectrics with low ESR and small temperature coefficients. For most applications, use three 22μ F capacitors.

Selecting the Battery Capacitor (CBATT)

C_{BATT} is in parallel with the battery to absorb the high-frequency switching ripple current.

In charge mode, the capacitor (C_{BATT}) is the output capacitor of the buck converter. The output voltage ripple can then be calculated with Equation (15):

$$\Delta r_{BATT} = \frac{\Delta V_{BATT}}{V_{BATT}} = \frac{1 - V_{BATT} / V_{SYS}}{8 \times C_{BATT} \times f_{SW}^2 \times L} \quad (15)$$

In boost mode, the capacitor (C_{BATT}) is the input capacitor of the boost converter. The input voltage ripple is the same as the output voltage ripple from Equation (15).

Both charge mode and boost mode have the same battery voltage ripple. The capacitor (C_{BATT}) can be calculated with Equation (16):

$$C_{BATT} = \frac{1 - V_{TC} / V_{SYS}_{MAX}}{8 \times \Delta r_{BATT}_{MAX} \times f_{SW}^2 \times L}$$
(16)

To guarantee $\pm 0.5\%$ BATT voltage accuracy, the maximum BATT voltage ripple must not exceed 0.5% (e.g.: 0.3%). The worst-case scenario occurs at the minimum battery voltage of the CC charge with the maximum input voltage.

For $V_{CC_MIN} = V_{TC} = 3V$, L is 2.2µH, f_{SW} is 550kHz, Δr_{BATT_MAX} is 0.3%, and C_{BATT} can be derived from Table 6.

Table 6: Battery Capacitance Selection

VPMID (V)	Сватт (µF)
5	25
9	41
12	47

Two or three 22μ F ceramic capacitors with X7R dielectrics capacitor in parallel are sufficient.

PCB Layout Guidelines

TEC

Efficient PCB layout is critical for meeting specified noise, efficiency, and stability requirements. A star ground design approach is typically used to keep the circuit block currents isolated (power-signal/control-signal). This reduces noise coupling and ground bounce issues. A single ground plane for this design is ideal. For best results, follow the guidelines below.

- Minimize the high-side switching node (SW, inductor) trace lengths in the high-current paths.
- 2. Keep the switching node short and away from all small control signals, especially the feedback network.
- 3. Place the input capacitor as close to VIN and PGND as possible.
- Place the local power capacitors connected from the PMID to PGND as close to the IC as possible.
- 5. Place the output inductor close to the IC and connect the output capacitor between the inductor and PGND of the IC.
- 6. Connect the power pads for VIN, PMID, SYS, SW, BATT, and PGND to as many coppers planes on the board as possible for high-current applications. *Aim to improve thermal performance because the board conducts heat away from the IC.*

TYPICAL APPLICATION CIRCUITS

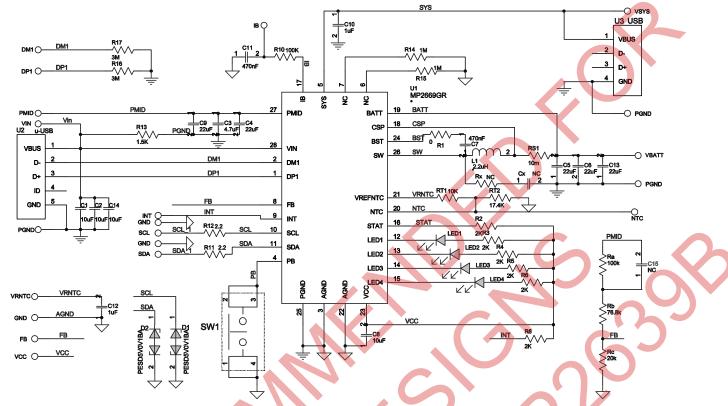
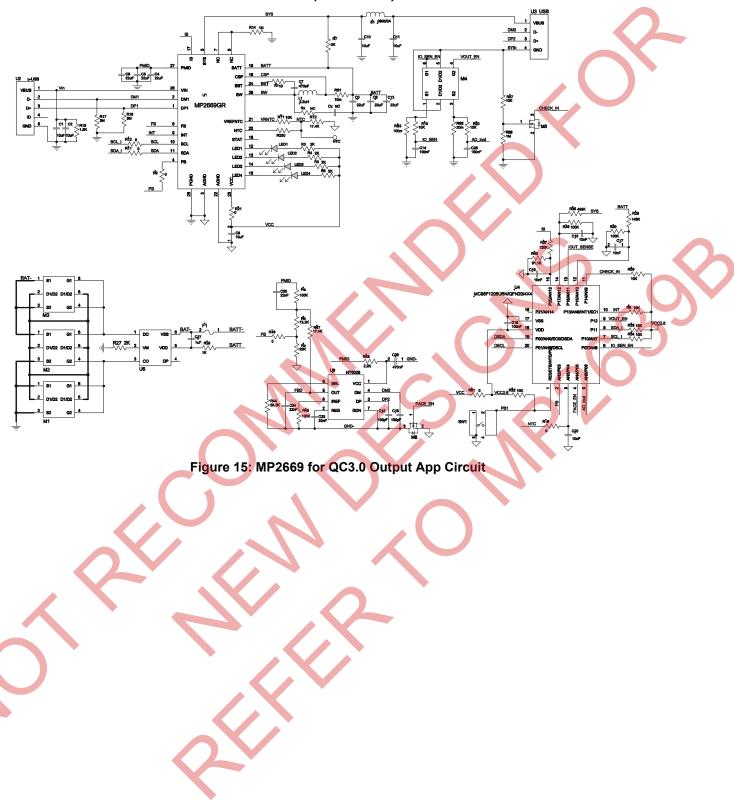



Figure 14: MP2669 for 5V Output Only

MPS.

TYPICAL APPLICATION CIRCUITS (continued)

I²C REGISTER MAP

IC Address: 6BH

Register Name	Address	R/W	Description			
Reg00	0x00	r/w	Input voltage regulation setting and input current limit setting			
Reg01	0x01	r/w	USB2 cable impedance compensation and register reset enable			
Reg02	0x02	r/w	Charge current setting			
Reg03	0x03	r/w	Pre-charge current setting and termination current level setting			
Reg04	0x04	r/w	Battery regulation voltage, trickle to CC threshold and auto- recharge threshold			
Reg05	0x05	r/w	Boost output current limit setting and charge termination setting			
Reg06	0x06	r/w	Battery impedance compensation and junction temperature loop setting			
Reg07	0x07	r/w	Miscellaneous control			
Reg08	0x08	r	Status register			
Reg09	0x09	r	Fault register			
Reg0a	0x0A	N/A	Part information			
Reg0b	0x0B	r/w	USB1 control register			
Reg0c	0x0C	r/w	USB2 protocol control register			
Reg0d	0x0D	r	USB1 and USB2 status register			
Reg0e	0x0E	r	USB1 status register			
Reg0f	0x0F	r	USB1 detection results			
Reg12	0x12	r	Battery real percentage against to the battery regulation voltage			
Reg13	0x13	r	LEDs indication control			

Reg00h (Default: 0101 0100)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	EN_HIZ	0	Y	Ν	r/w	0: disable 1: enable	Turn off Q1, Q2, Q3, Q4
6	Vin_reg [3]	1	Υ	Y	r/w	640mV	Input voltage clamp limit
5	VIN_REG [2]	0	Y	Y	r/w	320mV	setting. Offset: 3.88V/7.68V/10.72V
4	VIN_REG [1]	1	Y	Y	r/w	160mV	Range: 0 to 1.2V
3	VIN_REG [0]	0	Y	Y	r/w	80mV	Default: 800mV (4.68V)
2	I _{IN_LIM} [2]	1	Y	Y	r/w	000: 100mA 001: 500mA 010: 1000mA	5
1	I _{IN_LIM} [1]	0	Y	Y	r/w	011: 1500mA 100: 1800mA	Input current limit setting. Default: 1.8A
0	Iin_lim [0]	0	Y	Y	r/w	101: 2100mA 110: 2400mA 111: 3000mA	
Reg0	1h (Default:	0000	0000)				

Reg01h (Default: 0000 0000)

			,				
Bit	Name	NOA	Reset by REG_RST	Reset by WTD	M	Description	Comment
7	REG_RST	0	Y	¥	r/w	0: keep current setting 1: reset	Resets all registers to default. After reset, this bit goes back to 0 automatically.
6	WTD_TMR _RST	0	Y	Ν	r/w	0: normal 1: reset	Resets watchdog timer. After reset, this bit goes back to 0 automatically.
5	Q2_EN	0	Y	N	r/w	0: Q2 disable 1: Q2 enable	Only valid when reg0Bh bit[6] = 1.
4	BST_EN	0	Y	Y	r/w	0: boost disable 1: boost enable	Only valid when reg0Bh bit[6] = 1.
3	Rsys_CMP [2]	0	Y	Y	r/w	80mΩ	Used to compensate the
2	Rsys_CMP [1]	0	Y	Y	r/w	40mΩ	USB cable voltage drop.
1	Rsys_cmp [0]	0	Y	Y	r/w	20mΩ	Default: 0mΩ
0	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.

MP2669 Rev. 1.02 7/26/2019

Reg02h (Default: 0010 1011)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Існд [5]	0	Y	Y	r/w	3200mA	
6	Існд [4]	0	Y	Y	r/w	1600mA	Charge current setting.
5	I _{CHG} [3]	1	Y	Y	r/w	800mA	RS1 = 10mΩ
4	Існд [2]	0	Y	Y	r/w	400mA	Offset: 500mA Range: 500mA - 5A
3	Існд [1]	1	Y	Y	r/w	200mA	Default: 1500mA
2	Існд [0]	0	Y	Y	r/w	100mA	
1	Reserved	1	Y	Y	r/w	N/A	Must be set to 1.
0	Reserved	1	Y	Y	r/w	N/A	Must be set to 1.
Reg0	3h (Default:	0011 (0001)				
Bit	Name	POR	Reset by REG_RST	Reset by	RW	Description	Comment
Bit 7	Name	0 POR	 ≺ Reset by REG_RST 	 ≺ Reset by WTD 	r/w	Description 800mA	R
							RS1 = 10mΩ Offset: 100mA
7	I _{PRE} [3]	0	Y	Y	r/w	800mA	RS1 = 10mΩ
7 6	I _{PRE} [3] Ipre [2]	0	Y Y	Y Y	r/w r/w	800mA 400mA	RS1 = 10mΩ Offset: 100mA Range: 100mA - 1600mA
7 6 5	I _{PRE} [3] Ipre [2] Ipre [1]	0 0 1	Y Y Y	Y Y Y	r/w r/w r/w	800mA 400mA 200mA	RS1 = 10mΩ Offset: 100mA Range: 100mA - 1600mA Default: 400mA (0011)
7 6 5 4	Ipre [3] Ipre [2] Ipre [1] Ipre [0]	0 0 1 1	Y Y Y Y	Y Y Y Y	r/w r/w r/w r/w	800mA 400mA 200mA 100mA	RS1 = 10mΩ Offset: 100mA Range: 100mA - 1600mA Default: 400mA (0011) RS1 = 10mΩ Offset: 100mA
7 6 5 4 3	Ipre [3] Ipre [2] Ipre [1] Ipre [0] Iterm [3]	0 0 1 1 0	Y Y Y Y	Y Y Y Y	r/w r/w r/w r/w	800mA 400mA 200mA 100mA 800mA	RS1 = 10mΩ Offset: 100mA Range: 100mA - 1600mA Default: 400mA (0011) RS1 = 10mΩ

Reg04h (Default: 1011 0011)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Vbatt_reg [5]	1	Y	Y	r/w	800mV	
6	V _{BATT_REG} [4]	0	Y	Y	r/w	400mV	
5	Vbatt_reg [3]	1	Y	Υ	r/w	200mV	Offset: 3.1V
4	Vbatt_reg [2]	1	Y	Y	r/w	100mV	Range: 3.1V - 4.675V Default: 4.2V (101100)
3	Vbatt_reg [1]	0	Y	Y	r/w	50mV	\mathcal{S}
2	V _{BATT_REG} [0]	0	Y	Y	r/w	25mV	
1	VBATT_PRE	1	Y	Y	r/w	0: 2.8V 1: 3.0V	Default: 3.0V
0	VRECH	1	Y	Y	r/w	0: 100mV 1: 200mV	Default: 200mV

Reg05h (Default: 1001 1111)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	M	Description	Comment
7	EN_TERM	1	Y	Y	r/w	0: disable 1: enable	Default: enable
6	TERM_ST AT	0	Y	Y	r/w	0: match I _{TERM} , 1: indicate before the actual termination (500mA higher) on STAT	Default: match ITERM
5	WTD_TMR [1]	0	Y	N	r/w	00: disable timer 01: 40s	Default: 40s
4	WTD_TMR [0]	1	Y	N	r/w	10: 80s 11: 160s	Delault. 405
3	Reserved	1	N/A	N/A	r/w	N/A	Must be set to 1.
2	Iolim [2]	1	Y	Y	r/w	000: 500mA	
1	I _{OLIM} [1]	1	Y	Y	r/w	001: 900mA 010: 1200mA	
0	Iolim [0]	1	Y	Y	r/w	011: 1500mA 100: 1800mA 101: 2000mA 110: 2400mA 111: 3000mA	Default: 3000mA

MP2669 Rev. 1.02 7/26/2019

www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

© 2019 MPS. All Rights Reserved.

Reg06h (Default: 0000 0011)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Rbatt_cmp [2]	0	Y	Y	r/w	80mΩ	Used to compensate the battery internal resistance
6	Rbatt_cmp [1]	0	Y	Y	r/w	40mΩ	and protection IC resistance.
5	RBAT_CMP [0]	0	Y	Υ	r/w	20mΩ	Default: 0mΩ
4	VCLAMP [2]	0	Y	Y	r/w	64mV	Safety voltage clamp for the battery internal
3	VCLAMP [1]	0	Y	Y	r/w	32mV	resistance compensation
2	VCLAMP [0]	0	Y	Y	r/w	16mV	Default: 0mV
1	T _{REG} [1]	1	Y	Υ	r/w	00: 60°C 01: 80°C	Default: 120°C
0	T _{REG} [1]	1	Y	Y	r/w	10: 100°C 11: 120°C	
Reg0	7h (Default:	0100 ⁻	1011)				

Reg07h (Default: 0100 1011)

	· · ·							
Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment	
7	Reserved	0	Y	Y	N/A	N/A	Must be set to 0	
6	Reserved	1	N/A	N/A	r/w	N/A	Must be set to 1.	
5	Reserved	0	N/A	N/A	r/w	N/A	Must be set to 0.	
4	Reserved	0	N/A	N/A	r/w	N/A	Must be set to 0.	
3	EN_NTC	1	Y	Y	r/w	0: disable 1: enable	Default: enable	
2	Q1_DIS	0	Y	N	r/w	0: Q1 is not forced off 1: Q1 is forced off	Default: not forced off	
1	INT_ MASK [1]	1	Y	Y	r/w	0: no INT during CHG_FAULT 1: INT in CHG_FAULT	Default: INT in CHG_FAULT	
0	INT_MAST [0]	1	Y	Y	r/w	0: no INT during BAT_FAULT 1: INT in BAT_FAULT	Default: INT in BAT_FAULT	
	7 6 5 4 3 2 1	7Reserved6Reserved5Reserved4Reserved3EN_NTC2Q1_DIS1INT_MASK [1]0INT_MAST	7 Reserved 0 6 Reserved 1 5 Reserved 0 4 Reserved 0 3 EN_NTC 1 2 Q1_DIS 0 1 INT_MASK [1] 1	7 Reserved 0 Y 6 Reserved 1 N/A 5 Reserved 0 N/A 4 Reserved 0 N/A 3 EN_NTC 1 Y 2 Q1_DIS 0 Y 1 INT_MASK[1] 1 Y 0 INT_MAST 1 Y	7 Reserved 0 Y Y 6 Reserved 1 N/A N/A 5 Reserved 0 N/A N/A 4 Reserved 0 N/A N/A 3 EN_NTC 1 Y Y 2 Q1_DIS 0 Y N 1 INT_MASK [1] 1 Y Y	7 Reserved 0 Y Y N/A 6 Reserved 1 N/A N/A r/w 5 Reserved 0 N/A N/A r/w 4 Reserved 0 N/A N/A r/w 3 EN_NTC 1 Y Y r/w 2 Q1_DIS 0 Y N r/w 1 INT_MASK[1] 1 Y Y r/w	7Reserved0YYN/AN/A6Reserved1N/AN/Ar/wN/A5Reserved0N/AN/Ar/wN/A4Reserved0N/AN/Ar/wN/A3EN_NTC1YYr/w0: disable 1: enable2Q1_DIS0YNr/w0: Q1 is not forced off 1: Q1 is forced off1INT_MASK [1]1YYr/w0: no INT during CHG_FAULT 1: INT in CHG_FAULT0INT_MAST1YYr/w0: no INT during BAT_FAULT	

Reg08h (Default: 0000 0000)

-		1					
Bit	Name	POR	Reset by REG_RST	Reset by WTD	RW	Description	Comment
7	CHIP_ STAT [1]	0	Y	Y	r	00: none 01: USB1 is SDP or CDP	
6	CHIP_ STAT [0]	0	Y	Y	r	10: USB1 is DCP or Apple 11: boost	
5	CHG_ STAT [1]	0	Y	Y	r	00: not charging 01: trickle charge	
4	CHG_STA T [0]	0	Y	Y	r	10: constant current charge 11: charge done	
3	PPM_ STAT	0	Y	Y	r	0: no PPM 1: VINPPM or IINPPM	S X
2	PG_STAT	0	Y	Y	r	0: VIN not good 1: VIN good	VIN > 3.45V and VIN > V _{BATT} + 200mV
1	THERM_ STAT	0	Y	Y	r	0: normal 1: thermal regulation	
0	Reserved	0	N/A	N/A	r	N/A	

Reg09h (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	RW	Description	Comment		
7	WATCHDO G_FAULT	0	Y	Ν	r	0: normal 1: watchdog timer expiration			
6	BST_ FAULT	0	Y	Y	r	0: normal 1: SYS short circuit and battery UVLO			
5	CHG_ FAULT [1]	0	Y	Y	r	000:normal			
4	CHG_ FAULT [0]	0	Y	Y	r	010: USB1 UV or OV 101:thermal shutdown 110:safety timer expiration			
3	BAT_ FAULT	0	Y	Y	r	001:battery OVP			
2	NTC_ FAULT [2]	0	Y	Y	r	000: normal			
1	NTC_ FAULT [1]	0	Y	Y	r	001: NTC cold 010: NTC cool 011: NTC warm			
0	NTC_ FAULT [0]	0	Y	Y	r	100: NTC hot			

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2019 MPS. All Rights Reserved.

Reg0Ah (Default: 0000 0100)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.
5	PN [2]	0	Ν	Ν	r		
4	PN [1]	0	Ν	Ν	r	000: MP2669	
3	PN [0]	0	Ν	Ν	r		
2	NTC_TYPE	1	N	Ν	r	0: standard 1: JEITA	C
1	Rev [1]	0	Ν	Ν	r	00: first rev	
0	Rev [0]	0	Ν	Ν	r	ou. Instrev	

Reg0Bh (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	МЯ	Description	Comment
7	VIN_DSG	0	Y	Y	w	0: disable VIN discharge 1: enable VIN discharge	
6	I2C_CTRL	0	Y	N	w	1: enable I ² C control mode	1: I ² C mode. The protocol can be implemented step-by-step by the MCU. This bit must be 1.
5	USB1_ RDY	0	Y	Ν	w	0: disable USB1 charge 1: enable USB1 charge	
4	DP1/DM1 control [3]	0	Y	Y	¥	0 – keep DP1=0.6 and DM1 open 1 – Set DP1=3.3V and DM1=3.3V	
3	DP1/DM1 control[2]	0	Y	Y	w	0 – keep DP1=0.6 and DM1 open 1 – Set DP1=0.6V and DM1=0.6V	
2	DP1/DM1 control[1]	0	Y	Y	w	0 – keep DP1=0.6 and DM1 open 1 – Set DP1=3.3V and DM1=0.6V	
1	DP1/DM1 control[0]	0	Y	Y	w	0 – keep DP1=0.6 and DM1 open 1 – Set DP1=0.6V and DM1=GND	
0	Enable USB1 BC1.2 detection	0	Y	Y	w	0:disable USB1 BC1.2 detection 1:start USB1 BC1.2 detection	Used to detect BC1.2. After reset, this bit goes back to 0 automatically.

Reg0Ch (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.
5	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.
4	SYS_DSG	0	Y	Y	r/w	0: disable SYS discharge 1: enable SYS discharge	
3	Reserved	0	Y	Ν	r/w	N/A	Bit reserved.
2	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
1	Reserved	0	N/A	N/A	r/w	N/A	Bit reserved.
0	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.

Reg0Dh (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	M/A	Description	Comment
7	Reserved	N/A	N/A	N/A	N/A	N/A	N/A
6	BATT_ UVLO	0	Y	N	r	0: battery not in ULVO 1: battery in UVLO	When battery UVLO occurs, this bit is set to 1. Boost is latched off. This bit is reset only when the battery is charged again and V_{BATT} is higher than 2.9V.
5	Q2_OC	0	Y	Y	r	0: Q2 not over-current 1: Q2 over-current	Set reg01h bit[7] = 0 to clear this bit.
4	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved for SYS short- circuit.
3	PMID_OK	0	Y	Y	r	0: PMID voltage is not good 1: PMID voltage is good	
2	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
1	USB1_plug _in	0	Y	Y	r	0: USB1 is not plugged in 1: USB1 is plugged in	VIN > 3.45V and VIN > V _{BATT} + 460mV
0	USB1_GT_ 1V	0	Y	Y	r	0: USB1 voltage greater than 1V 1: USB1 voltage greater than 1V	

Reg0Eh (Default: 0000 0000)

Regu	g0Eh (Default: 0000 0000)									
Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment			
7	Reserved	N/A	N/A	N/A	N/A	N/A	N/A			
6	Reserved	N/A	N/A	N/A	N/A	N/A	N/A			
5	USB1_OV	0	Y	Y	r	0: USB1 not over-voltage 1: USB1 over-voltage				
4	USB1_UV	0	Y	Y	r	0: USB1 not under-voltage 1: USB1 under-voltage				
3	Reserved	0	NA	NA	NA	NA				
2	Reserved	0	NA	NA	NA	NA				
1	Reserved	0	NA	NA	NA	NA	Bit Reserved.			
0	Reserved	0	NA	NA	NA	NA				
REG	0Fh (Default	: 0000	0000)						
Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment			
7	Reserved	N/A	N/A	N/A	N/A	N/A	Bit reserved.			
6	Reserved	0	Y	Y	٢	N/A	Bit reserved.			
5	Reserved	0	Y	Y	r	N/A	Bit reserved.			
4	Reserved	0	Υ	Y	r	N/A	Bit reserved.			
3	USB1_ TYPE [3]	0	Y	Y	r	0000: none 0001: SAMSUNG 1.2V				
2	USB1 TYPE [2]	0	Y	Y	r	0010: APPLE 1A 0011: APPLE 2.1A 0100: APPLE 2.4A				
1	USB1_ TYPE[1]	0	Y	Y	r	0101: SDP 0110: CDP	Auto-generated by the USB1 type detection.			
0	USB1_ TYPE [0]	0	Y	Y	r	0111: DCP 1000: Proprietary Charger 1001: Proprietary Charger 1010: Proprietary Charger				

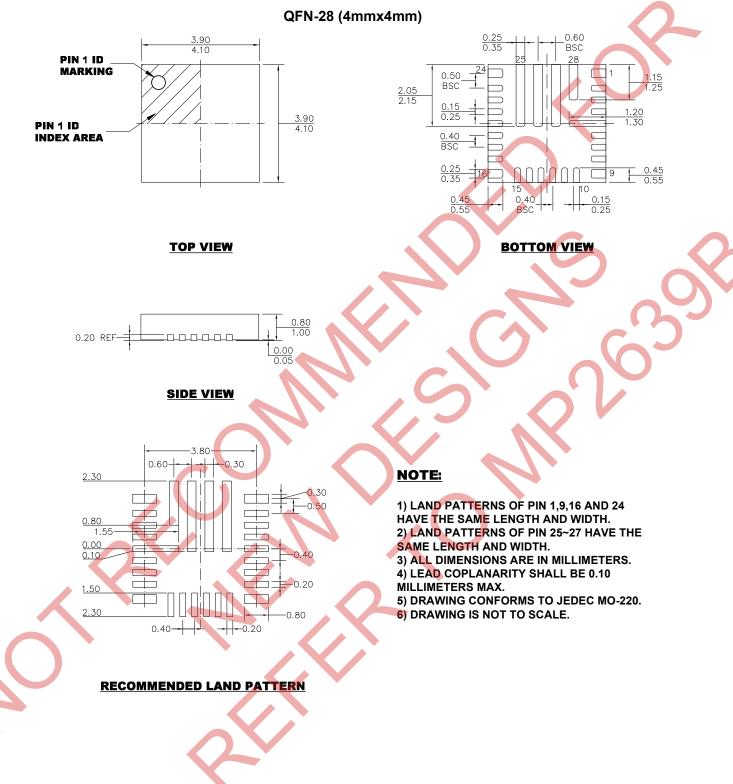
Reg12h (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	VBATT [7]	0	Y	Y	r	Vbatt_reg/2	
6	VBATT [6]	0	Y	Y	r	VBATT_REG/4	
5	VBATT [5]	0	Y	Y	r	VBATT_REG/8	
4	VBATT [4]	0	Y	Y	r	Vbatt_reg/16	
3	VBATT [3]	0	Y	Y	r	VBATT_REG/32	
2	VBATT [2]	0	Y	Y	r	VBATT_REG/64	
1	VBATT [1]	0	Y	Y	r	Vbatt_reg/128	
0	VBATT [0]	0	Y	Y	r	Vbatt_reg/256	

Reg13h (Default: 0000 0000)

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	N/A	N/A	N/A	N/A	N/A	N/A
6	Reserved	N/A	N/A	N/A	N/A	N/A	N/A
5	Reserved	N/A	N/A	N/A	N/A	N/A	N/A
4	EN_LED_ CTRL	0	Y	N	r/w	0: disable I ² C write FG_LEDs on/off 1: enable I ² C write FG_LEDs on/off	
3	LED [3]	0	Y	Ν	r/w	0: off 1: on	
2	LED [2]	0	Y	Z	r/w	0: off 1: on	
1	LED [1]	0	Y	Ν	r/w	0: off 1: on	
0	LED [0]	0	Y	N	r/w	0: off 1: on	

OTP MAP


#	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
0x00	N/A	N/A Vin regulation voltage lin limit											
0x02	Charge current N/A												
0x03		Pre	charge current			Termina	nation current						
0x04	Battery regulation voltage N/A												
0x05			N/A	SYS	SYS output current limit								
0x0B	N/A USB1 charge enabled/disabled N/A												

OTP DEFAULT

OTP Items	Default	
Vin regulation voltage	800mV	
	Offset: 3.88V/7.68V/10.72V	
lin limit	1.8A	
Charge current (RS1=10mΩ)	1500mA	
Precharge current (RS1=10mΩ)	400mA	
Termination current (RS1=10mΩ)	200mA	
Battery regulation voltage	4.2V	
SYS output current limit	3.0A	•
USB1 Charge enabled/disabled	Disable USB1 Charge	

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.