

MP2673

4.5A, Fast Battery Charger with 3A Boost System Current and Programmable **Battery Discharge Current Limit**

DESCRIPTION

The MP2673 is a highly integrated, flexible, switch-mode, battery charge management and power-path management system designed for single-cell Li-ion and Li-polymer batteries used in a wide range of portable applications.

The IC has two operating modes (charge mode and boost mode) to allow for management of the system and battery power based on the state of the input and output.

When input power is present (up to 14V), the device operates in charge mode. The device detects the battery voltage automatically and charges the battery in four phases: trickle current charge, pre-charge, constant-current charge. and constant-voltage charge.

In the absence of an input source, the MP2673 switches to boost mode to power SYS from the battery. The IC can provide a wide boost voltage to SYS by adjusting the feedback voltage at FB.

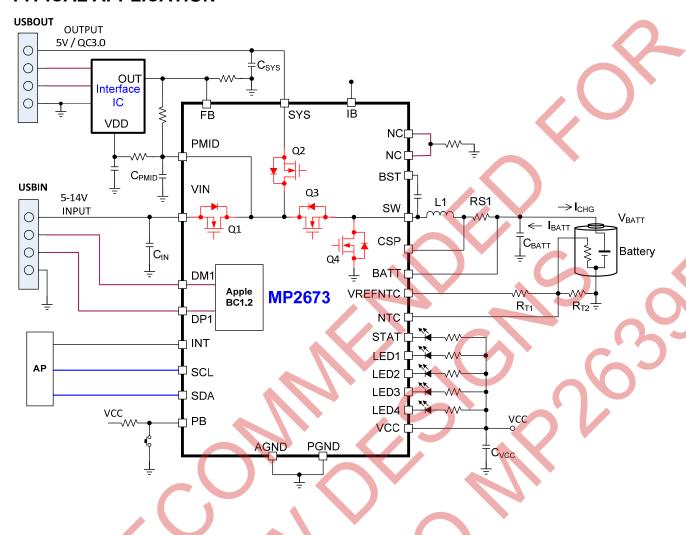
With the I2C interface, the IC can flexibly program charging and boosting parameters such as input current limit, charging current, battery regulation (charge full) voltage, safety timer, boost output current limit, etc. The MP2673 can also provide the operation status through the I²C registers and remaining battery capacity via four LEDs.

To guarantee safe operation, the IC limits the die temperature to a preset value of 120°C (default). Other safety features include input over-voltage protection (OVP), battery over-voltage protection (OVP), thermal shutdown, and battery temperature monitoring.

QFN-28 The MP2673 is available in (4mmx4mm) package.

FEATURES

- 4.0V to 14V Operation Voltage Range
- Up to 24V Sustainable Input Voltage
- BC1.2 Detection with I²C Programmable DP1/DM1 Control
- Integrated Input-Current-Based and Input-Voltage-Based Power Management **Function**
- Up to 4.5A Programmable Charge Current
- Reverse Boost Operation Mode with up to 3A Output Current and Adjustable 5V to 12V Output Voltage
- Analog Voltage Output IB Pin for Battery **Current Monitor**
- Programmable 3.1 4.675V Charge Voltage with 0.5% Accuracy
- Four-LED Battery Gauge Indicators
- JEITA-Compatible Negative Temperature Coefficient (NTC) Protection
- Programmable Timer Back-Up Protection
- Thermal Regulation and Thermal Shutdown
- **USB** Output Cable Impedance Compensation
- Integrated Short-Circuit Protection (SCP) for **Boost Mode**
- Integrated Short-Circuit Protection (SCP) and Over-Voltage Protection (OVP) for Pass-Through Path
- Integrated 8-Bit SAR ADC for Battery-Voltage Measurement


APPLICATIONS

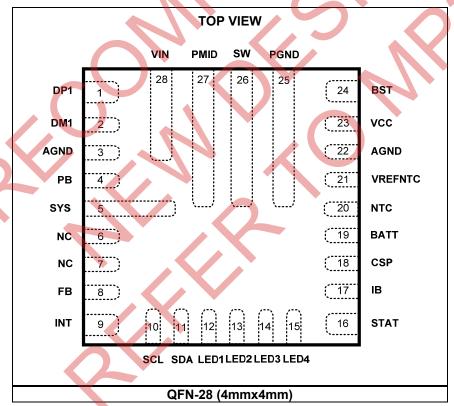
- Sub-Battery Applications
- Power-Bank Applications for Smart phones, Tablets, and Other Portable Devices

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP2673GR-xxxx**	QFN-28(4mmx4mm)	See Below
EV2673-R-00A	Evaluation Kit (w/ MCU)	


*For Tape & Reel, add suffix –Z (e.g.: MP2673GR–0000-Z)

TOP MARKING

MPSYWW MP2673 LLLLLL

MPS: MPS prefix Y: Year code WW: Week code MP2673: Part number LLLLLL: Lot number

PACKAGE REFERENCE

^{**&}quot;xxxx" is the register setting option. The factory default is "0000". This content can be viewed in the I²C Register Map section. For customized options, please contact an MPS FAE to obtain a "xxxxx" value.

PIN FUNCTIONS

Package Pin #	Name	I/O	Description
1	DP1	I/O	Positive line of the USB data line pair for BC1.2 detection. Connect a $3M\Omega$ resistor from DP1 to GND.
2	DM1	I/O	Negative line of the USB date line pair for BC1.2 detection. Connect a $3 \text{M}\Omega$ resistor from DM1 to GND.
3	AGND	Power	Analog ground. Connect AGND to PGND.
4	PB	I	Press button input. A low-to-high edge enables the boost power output.
5	SYS	Power	System power supply. Connect a >1µF ceramic capacitor from SYS to PGND.
6, 7	NC	I/O	Connect a 1MΩ resistor to GND.
8	FB	- 1	Voltage feedback input in discharge mode.
9	INT	0	Open-drain interrupt output. INT can send the charging status and fault interrupt to the host.
10	SCL	I/O	I ² C Interface clock. Connect SCL to the logic rail through a 10kΩ resistor.
11	SDA	I/O	I ² C Interface data. Connect SDA to the logic rail through a 10kΩ resistor.
12-15	LED1-4	0	Battery gauge indicator output. Connect a resistor and an LED in series from LEDx to VCC.
16	STAT	0	Indicator for charging operation.
17	IB	0	Battery current representation. The voltage from IB indicates the charge current to the battery in charge mode and the discharge current out of the battery in boost mode. Connect an R-C filter from IB to AGND to get the proper current information.
18	CSP	ı	Positive battery terminal/battery charge current sense negative input.
19	BATT	ı	Battery positive terminal.
20	NTC	ı	Temperature sense input. Connect a negative temperature coefficient thermistor to NTC. Program the hot and cold temperature window with a resistor divider from VREFNTC to NTC to GND. Charging and discharging are suspended when the NTC voltage is out of range.
21	VREFNTC	0	Reference voltage output for powering up the NTC.
22	AGND	Power	Analog ground. Connect AGND (pin 22) to AGND (pin 3).
23	VCC	ı	Internal circuit power supply. Bypass VCC to AGND with a 10µF ceramic capacitor. VCC cannot carry a load greater than 30mA.
24	BST	1	Bootstrap. Connect a bootstrap capacitor between BST and SW to form a floating supply across the power switch driver to drive the power switch's gate above the supply voltage.
25	PGND	Power	Power ground.
26	SW	Power	Switching output node.
27	PMID	Power	Reverse-blocking MOSFET bypass. PMID is connected to the drain of the reverse-blocking MOSFET and the drain of the high-side MOSFET internally. Bypass PMID with a ceramic capacitor (≥44µF) from PMID to PGND as close as possible to IC.
28	VIN	Power	Power input of the IC from USB1. Place a ceramic capacitor (\geq 10µF) from VIN to PGND as close as possible to the IC.

ABSOLUTE MAXIMUM RATINGS $^{(1)}$ VIN, PMID, SYS to PGND0.3V to +24V SW to PGND0.3V (-2V for 20ns) to +24V BST to PGNDSW to SW + 6V BATT to PGND0.3V to +5.3V All other pins to AGND0.3V to +6.0V Continuous power dissipation $(T_A = +25^{\circ}C)^{(2)}$ 2W
Junction temperature
Recommended Operating Conditions (3)
Supply voltage (VIN)4.0V to +14V
I_{IN} up to 3A
I _{SYS} up to 3A
I _{CHG} up to 4.5A
V _{BATT} up to 4.675V
V_{SYS} up to 20V
Operating junction temp. (T_J) 40°C to +125°C

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
QFN-28 (4mmx4mm)	44	9	.°C/W

NOTES:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)- T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
VIN to PMID switch (Q1) on resistance	R _{IN to PMID}			32		mΩ
PMID to SYS switch (Q2) on resistance	R _{PMID} to SYS			32		mΩ
High-side switch on resistance	R _{HS}			18		mΩ
Low-side switch on resistance	R _{LS}			8		mΩ
Peak current limit for high- side switch	I _{PEAK_HS}	Charger CC mode		9.0		Α
Peak current limit for low- side switch	I _{PEAK_LS}	Boost mode (Reg0C[7:5] = 100)		8.0		Α
Operating frequency	F _{SW}			550		kHz
VCC LDO output voltage	V _{VCC}	V _{IN} = 5V, I _{VCC} = 100mA	4.35	4.50	4.65	V
VCC UVLO	Vcc_uvlo	VCC rising	2.0	2.2	2.4	V
VCC UVLO hysteresis				280		mV
VCC POR for IIC	Vcc_por	VCC rising		2		V
VCC POR hysteresis				150		mV
Charge Mode						
Input quiescent current	la	V _{IN} >V _{IN_UVLO} , V _{IN} >V _{BATT} , charge enabled, BATT and SYS float		2.3	3.0	mA
Input under-voltage lockout	V _{IN_ULVO}	V _{IN} rising		3.45	3.60	V
Input V _{ULVO} hysteresis		V _{IN} falling		320		mV
V _{IN} vs. V _{BATT} headroom		V _{IN} rising V _{IN} falling	350 60	460 140	570 210	mV mV
		5V detected, V _{IN} rising	00	7	210	1117
V _{IN} over-voltage protection	V _{IN_OVP}	9V detected, V _{IN} rising		11		V
VIN Over-voltage protection	VIN_OVP	12V detected, V _{IN} rising		14		V
		5V detected, V _{IN} rising		17		
V _{IN} over-voltage protection		9V detected, V _{IN} rising		400		mV
hysteresis		12V detected, V _{IN} rising		400		1110
System over-current	$\overline{}$	12V detected, Vin Horing				
protection threshold	ISYSOCP		4.0	5.5	6.5	Α
System over-current blanking time	Tsysocblk			3		ms
System over-current recover time	Tsysrecvr			300		ms

 $\hfill @$ 2018MPS. All Rights Reserved.

 $V_{IN} = 5.0V$, $V_{BATT} = 3.5V$, RS1 = $10m\Omega$, $T_A = +25$ °C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
		5V detected, V _{IN} rising		3.5		
V _{IN} under-voltage detection	V_{IN_UV}	9V detected, V _{IN} rising		7.5		V
		12V detected, V _{IN} rising		10.5		
		5V detected, V _{IN} rising				
V _{IN} under-voltage detection hysteresis		9V detected, V _{IN} rising		400		mV
Trysteresis		12V detected, V _{IN} rising				
Discharge dummy load at VIN	R _{IN_DUM}			55		Ω
Discharge dummy load at SYS	Rsys_dum			25		Ω
Battery regulation (charge-full) voltage [I ² C]	V _{BATT_REG}	Depends on the I ² C setting	3.1		4.675	V
Charge voltage regulation		Reg04[7:2] = 101100, V _{BATT_REG} = 4.2V	-0.5		0.5	%
accuracy		Reg04[7:2] = 110010, V _{BATT_REG} = 4.35V	-0.5		0.5	/0
Constant current charge current [I ² C]	Icc	Depends on the I ² C setting	500		4500	mA
Charge current regulation		Reg02[7:2] = 100011, I _{CHG} = 4A	-5.0		5.0	%
Charge current regulation accuracy		Reg02[7:2] = 001010, I _{CHG} = 1.5A	-5.0		5.0	%
		Reg02[7:2] = 000000, I _{CHG} = 0.5A	-15		15	%
Battery pre-charge threshold	VBATT_PRE	Reg04[4] = 1, V _{BATT} rising	2.85	3.0	3.15	V
[I ² C]	V BATT_FRE	Reg04[4] = 0, VBATT rising	2.65	2.8	2.95	
Battery pre-charge hysteresis		VBATT falling		200		mV
Battery short threshold	VBATT_TC	VBATT rising	1.9	2.0	2.1	V
Battery short threshold hysteresis		VBATT falling		250		mV
Trickle charge current	Ітс	V_{BATT} = 1V, RS1 = 10m Ω		100		mA
Pre-charge current [I ² C]	I PRE	Depends on the I ² C setting, RS1 = $10m\Omega$	100		1600	mA
Pre-charge current accuracy		Reg03[7:4] = 0001, I_{PRE} = 200mA, V_{BATT} = 2.6V, RS1 = 10m Ω	-20		20	%
Termination current [I ² C]	ITERM	Depends on the I ² C setting	200		1700	mA
Termination current accuracy		Reg03[3:0] = 0000, I_{TERM} = 200mA, V_{BATT_REG} = 4.2V, RS1 = 10m Ω	-20		20	%
Recharge threshold below VBATT_REG	V _{RECH}	Reg04[0] = 1		270		mV

 V_{IN} = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Voltage and Input Cur	rrent-Based	Power Path				
		Reg00[6:3] = 1010, V _{IN} = 5V, V _{IN_REG} = 4.68V	-3		3	%
Input voltage regulation accuracy		Reg00[6:3] = 1010, V _{IN} = 9V, V _{IN_REG} = 8.60V	-3		3	%
		Reg00[6:3] = 1010, V _{IN} = 12V, V _{IN_REG} = 11.60V	-3		3	%
		Programmable range	100		3000	mA
		Reg00[2:0] = 001	470	535	600	
		Reg00[2:0] = 010	900	1070	1250	
Input current limit	I _{IN_LMT}	Reg00[2:0] = 011	1420	1610	1800	
Input current infint	IIN_LIMI	Reg00[2:0] = 100	1700	1950	2200	
		Reg00[2:0] = 101	2000	2250	2500	
		Reg00[2:0] = 110	2300	2550	2800	
		Reg00[2:0] = 111	2900	3200	3500	
Protection						
Battery over-voltage protection	V _{BATT_OVP}	Rising, as a percentage of VBATT_REG	1	103.5	C	%
Battery over-voltage protection hysteresis		Falling, as a percentage of VBATT_REG		2	7	%
Thermal shutdown rising threshold ⁽⁵⁾	T _{J_SHDN}	T _J rising		150		°C
Thermal shutdown hysteresis (5)				20		°C
VREFNTC voltage	VVREFNTC	V _{IN} = 5V, I _{VREFNTC} = 1mA		4.8		V
NTC low temp rising threshold	TCOLD	As a percentage of VVREFNTC	70.4	71	71.6	%
NTC low temp rising threshold hysteresis		As a percentage of VVREFNTC		0.7		%
NTC cool temp rising threshold	TCOOL	As a percentage of VVREFNTC	68.5	69	69.5	%
NTC cool temp rising threshold hysteresis		As a percentage of VVREFNTC		0.7		%
NTC warm temp falling threshold	Twarm	As a percentage of VVREFNTC	55.5	56.1	56.7	%
NTC warm temp falling threshold hysteresis		As a percentage of V _{VREFNTC}		1.2		%
NTC hot temp falling threshold	Тнот	As a percentage of VVREFNTC	47.6	48.1	48.6	%
NTC hot temp falling threshold hysteresis		As a percentage of V _{VREFNTC}		1.2		%

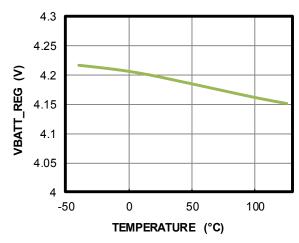
 V_{IN} = 5.0V, V_{BATT} = 3.5V, RS1 = 10m Ω , T_A = +25°C, unless otherwise noted.

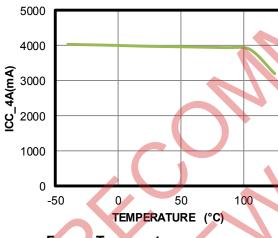
Parameter	Symbol	Condition	Min	Тур	Max	Units
Boost Mode				•		
Standby quiescent current	I _{Q_STB}	V _{IN} < V _{IN_UVLO} , V _{BATT} = 4.2V, boost off (sleep mode)		18	22	μA
Boost quiescent current	I _{Q_BST}	I_{SYS} = 0, V_{PMID} = 5.5V, boost enabled, V_{BATT} = 4.2V		2	3	mA
Feedback voltage			500	515	530	mV
Feedback input current		V _{FB} = 0.52V			200	nA
Boost output voltage accuracy		As percentage of V _{OUT(BST)} , I _{SYS} = 10mA	-2		2	%
Boost output PMID power good		V _{PMID} rising		4.75		V
Boost output under-voltage	V _{PMID_BST_}	VBATT = 3.6V, VPMID falling		3.85		V
protection	UVLO	V_{BATT} = 4.2V, V_{PMID} falling, higher than V_{BATT}		160		mV
		Programmable range	900		3600	
Docat output ourront limit		Reg05[2:0] = 111, V _{BATT} = 3.7V, 5V output	3600			0
Boost output current limit [I ² C]	I _{BST_LIMT}	Reg05[2:0] = 101, V _{BATT} = 3.7V, 9V output	2000	2250		mA
		Reg05[2:0] = 011, V _{BATT} = 3.7V, 12V output	1500	1700		
Pottony voltage LIV/I O	V.	During boosting		2.5		V
Battery voltage UVLO	V _{BATT_UVLO}	Before boost starts		2.9		V
System no-load to turn-off boost automatically	I _{BST_OFF}	Battery current in boost mode, V _{SYS} = 5V, V _{BATT} = 3.7V	5	35	100	mA
Delay for light load turn-off		Battery current is below loff in boost mode		36		s
		I _{BATT} = 1A		0.4		V
IB voltage output	V _{IB}	Battery current indication tolerance, IBATT = 1A	-5		5	%
DP1/DM1 USB Detection				-		
DP1 voltage source	V _{DP1_SRC}	I _{DP1_SRC} > 250µA	0.5	0.6	0.7	V
DM1 voltage source	V _{DM1_SRC}	I _{DP2_SRC} > 250μA	0.5	0.6	0.7	V
DP1 pull-up voltage source	V _{DP1_UP}		3	3.3	3.6	V
DM1 pull-up voltage source	VDM1_UP		3	3.3	3.6	V
Data detect voltage	V _{DAT_REF}		0.25	0.325	0.4	V
Data connect detect current source	I _{DP_SRC}		7		13	μΑ
DM1 pull-down resistance	R _{DM_DOWN}		14.3	20	24.8	kΩ
DM1 sink current	I _{DM1_SINK}		70	130	170	μA
DP1 sink current	IDP1_SINK		70	130	170	μA

 $V_{IN} = 5.0V$, $V_{BATT} = 3.5V$, RS1 = $10m\Omega$, $T_A = +25$ °C, unless otherwise noted.

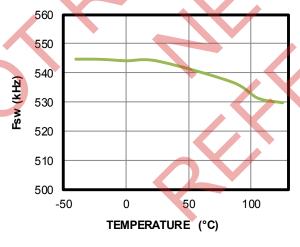
Parameter	Symbol	Condition	Min	Тур	Max	Units
Leakage current input	I _{DP_LKG}		-1		11	μA
DP1/DM1 pin	I _{DM_LKG}		-1		1	μA
Logic I/O Pin Characteristic	S					
Low logic voltage threshold	V_L				0.4	V
High logic voltage threshold	V_{H}		1.3			V
I ² C Interface (SDA, SCL)						
Input high threshold level		V _{PULL_UP} = 1.8V, SDA and SCL	1.3			V
Input low threshold level		V _{PULL_UP} = 1.8V, SDA and SCL			0.4	V
Output low threshold level		Isink = 5mA			0.4	V
I ² C clock frequency	FscL				400	kHz
Indication and Logic					•	
LED1, LED2, LED3, LED4, STAT pin output low voltage	V_{LED_Low}	Sink 5mA		C	0.4	V
Press Button (PB)				10		
PB pull-up resistance	R _{PB}	PB pulled up to VCC		350		kΩ
PB input logic low voltage	V_{L_PB}				0.4	V
PB input logic high voltage	V_{H_PB}		1.2			V
Digital Clock and Watchdog	Timer				- V	
Digital clock	F _{DIG1}	VREF LDO enabled		1000		kHz
Watchdog timer	t _{WDT}	Reg05h bit[5:4] = 01		40		s
ADC for Battery Voltage						
Effective resolution (current)					8	bits
Conversion time	tsr_conv			20		μs

MP2673 Rev. 1.0 www.MonolithicPower.com 12/7/2018

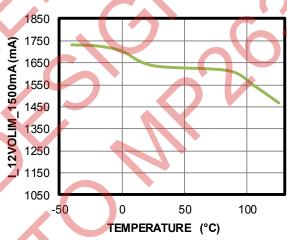

Guaranteed by design.

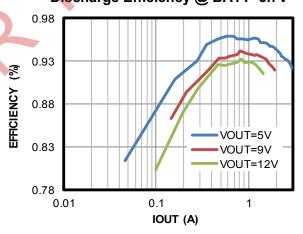

TYPICAL PERFORMANCE CHARACTERISTICS

 C_{IN} = 10 μ F, C_{BATT} = 44 μ F, C_{PMID} = 44 μ F, C_{SYS} = 1 μ F, L1 = 2.2 μ H, RS1 = 10mΩ, BATT_REG = 4.2V, real/simulation battery load, T_A = 25°C, unless otherwise noted.



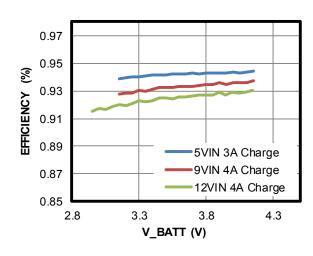
ICC_4A vs. Temperature


F_{SW} vs. Temperature

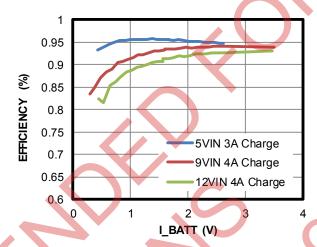

VBATT_OVP_R vs. Temperature

I_12V OLIM_1.5A vs. Temperature

Discharge Efficiency @ BATT=3.7V

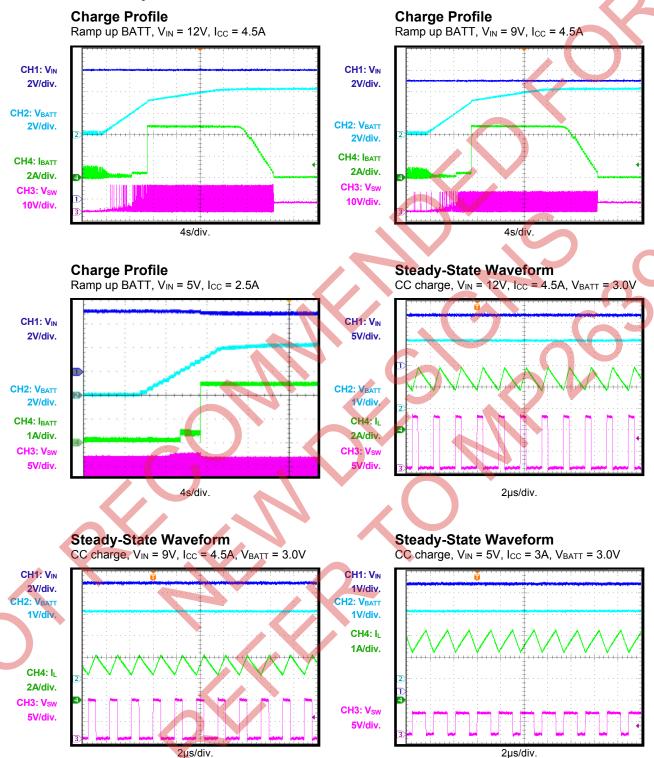


© 2018MPS. All Rights Reserved.

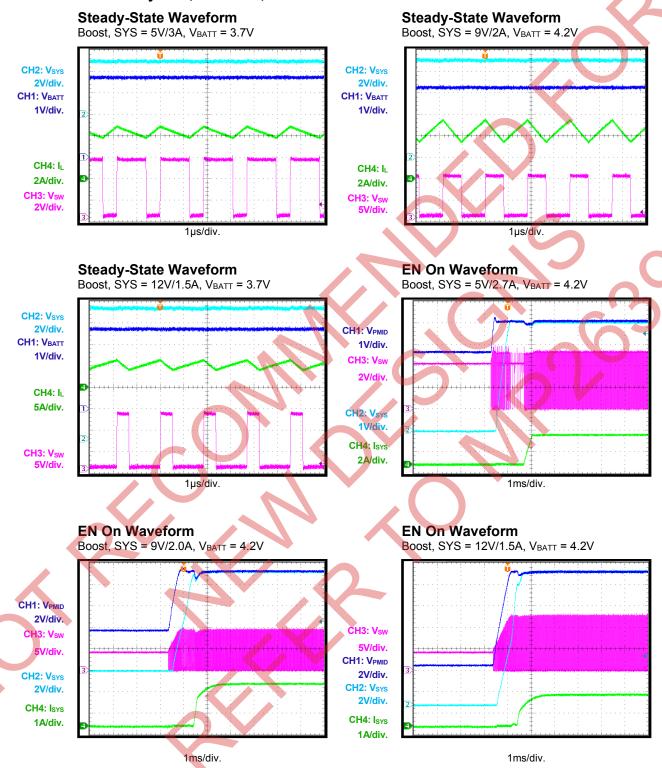


 C_{IN} = 10 μ F, C_{BATT} = 44 μ F, C_{PMID} = 44 μ F, C_{SYS} = 1 μ F, L1 = 2.2 μ H, RS1 = 10m Ω , BATT_REG = 4.2V, real/simulation battery load, T_A = 25°C, unless otherwise noted.

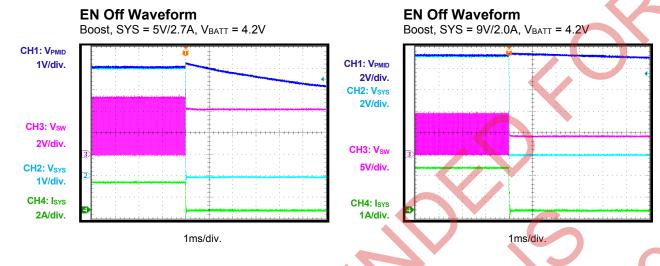
CC Charge Efficiency



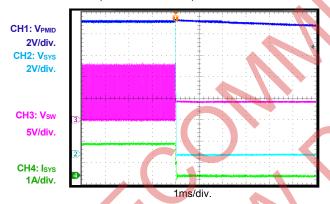
CV Charge Efficiency



 C_{IN} = 10 μ F, C_{BATT} = 44 μ F, C_{PMID} = 44 μ F, C_{SYS} = 1 μ F, L1 = 2.2 μ H, RS1 = 10m Ω , BATT_REG = 4.2V, real/simulation battery load, T_A = 25°C, unless otherwise noted.



 C_{IN} = 10 μ F, C_{BATT} = 44 μ F, C_{PMID} = 44 μ F, C_{SYS} = 1 μ F, L1 = 2.2 μ H, RS1 = 10mΩ, BATT_REG = 4.2V, real/simulation battery load, T_A = 25°C, unless otherwise noted.



 C_{IN} = 10 μ F, C_{BATT} = 44 μ F, C_{PMID} = 44 μ F, C_{SYS} = 1 μ F, L1 = 2.2 μ H, RS1 = 10m Ω , BATT_REG = 4.2V, real/simulation battery load, T_A = 25°C, unless otherwise noted.

Boost, SYS = 12V/1.5A, V_{BATT} = 4.2V

BLOCK DIAGRAM

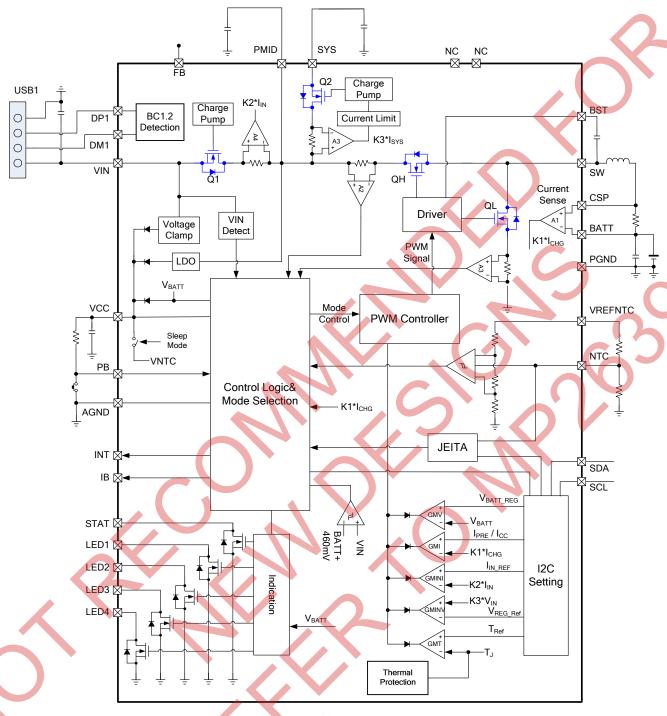


Figure 1: Charge Mode

BLOCK DIAGRAM (continued)

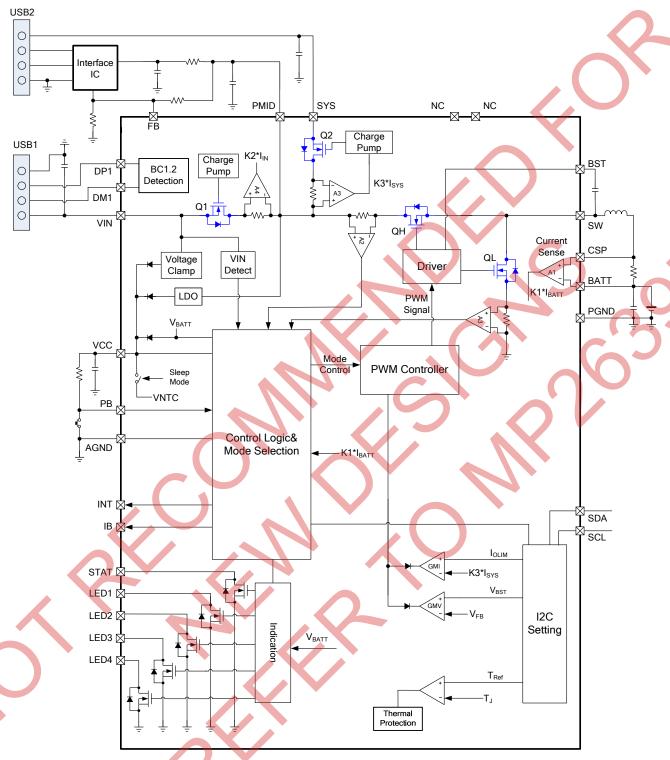


Figure 2: Boost Mode

© 2018MPS. All Rights Reserved.

OPERATION

The MP2673 is an I²C-controlled, synchronous, switching charger with bidirectional operation for a boost function that can step up the battery voltage to power the system. Depending on the input and output status, the MP2673 operates in one of three modes: charge mode, boost mode, or sleep mode. In charge mode, the IC supports a precision Li-ion or Li-polymer charging system for single-cell applications. In boost mode, the IC boosts the battery voltage to SYS for powering higher-voltage systems. In sleep mode, the IC stops charging or boosting and operates at a low current from the input or the battery to reduce power consumption when the IC is not operating. The IC monitors USB1 and USB2 to provide a smooth transition between different modes of operation.

Power Supply

The internal bias circuit of the IC is powered from the highest voltage of V_{PMID} and V_{BATT} . When V_{CC} rises above the V_{CC_POR} threshold, the I²C interface is ready for communication, and all registers are reset to the default value. The host can access all registers.

VCC supplies the internal bias circuits and the high-side and low-side MOSFET gate drives. The pull-up rail of STAT can also be connected to VCC.

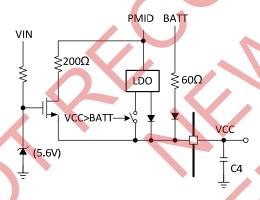


Figure 3: VCC Power Supply Circuit

In boost mode, the VCC LDO is enabled once boost is enabled.

In charge mode, the internal VCC LDO is enabled when the following conditions are valid:

- V_{PMID} > V_{CC POR} (2V)
- No thermal shutdown

The VCC load capability is not recommended to be higher than 30mA.

Input Power Status Indication

The IC qualifies the voltage and current of the input source before start-up. The input source must first meet the following requirements:

- V_{IN}> V_{BATT} + 460mV
- V_{IN}> V_{IN UVLO}

Once the input power source meets the conditions above, the system status register reg08 bit[2] asserts that the input power is good, and BC1.2 detection starts if enabled. Then the step-down converter is ready to operate.

All of the above conditions are monitored continuously. The charge cycle is suspended if one condition exits the limits.

CHARGER MODE OPERATION

Charge Cycle

In charge mode, the IC has five control loops to regulate the input voltage, input current, charge current, charge voltage, and device junction temperature.

When the input power is qualified as a good power supply, the IC checks the battery voltage to provide four main charging phases: trickle-charge, pre-charge, constant-current charge, and constant-voltage charge.

- Phase 1 (trickle charge): If the battery voltage is lower than VBATT_TC (2.1V), a trickle-charge current of 100mA is applied to the battery. This helps reset the protection circuit in the battery pack.
- Phase 2 (pre-charge): If the battery voltage exceeds V_{BATT_TC}, the IC starts to safely pre-charge the deeply depleted battery until the battery voltage reaches the pre-charge to fast-charge threshold (V_{BATT_PRE}). The pre-charge current can be programmable via the I²C register reg03 bit[7:4].
- 3. Phase 3 (constant-current charge): When the battery voltage exceeds V_{BATT_PRE} set via reg04 bit[1], the IC enters a constant-current charge (fast charge) phase. The fast-charge current can be programmed as high as 4.5A via reg02 bit[7:2].
- 4. Phase 4 (constant-voltage charge): When the battery voltage rises to the pre-

programmed battery regulation (charge-full) voltage (V_{BATT_REG}) set via reg04 bit[7:2], the charge current begins to taper off.

The charge cycle is completed when the charge current reaches the battery-full termination threshold (I_{TERM}) set via reg03 bit[3:0], assuming the termination function is enabled via reg05 bit[7] (see Figure 4).

During the entire charging process, the actual charge current may be less than the register setting due to other loop regulations, such as dynamic power management (DPM) regulation (input current or input voltage loops) or thermal regulation. The thermal regulation reduces the charge current so that the IC junction temperature does not exceed the preset limit. The multiple thermal regulation thresholds from 60 - 120°C help the system design meet thermal requirements in different applications. The junction temperature regulation threshold can be set via reg06 bit[1:0].

A new charge cycle begins when the following conditions are valid:

- The input power is plugged in again and USB1 is ready (see the Input USB BC1.2 Detection section on page 20).
- Battery charging is enabled by the I²C, and CE is forced to a high logic.
- No thermistor fault.
- No battery over-voltage.

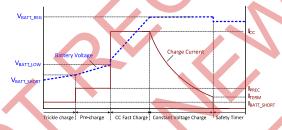


Figure 4: Battery Charge Profile

Automatic Recharge

When the battery is charged full or the charging is terminated, the battery may be discharged because of system consumption or self-discharge. When the battery voltage is discharged below the recharge threshold (programmable via reg04 bit[0]), the IC begins another new charging cycle automatically without having to restart a charging cycle manually if the input power is valid.

Battery Over-Voltage Protection (OVP)

The IC has battery over-voltage protection (OVP). If the battery voltage exceeds the battery over-voltage threshold (103.3% of the battery regulation voltage), charging is disabled. Under this condition, an internal current source draws current from BATT to decrease the battery voltage and protect the battery.

When battery OVP occurs, only the charging is disabled, and the pass-through path is still on.

Indication

Apart from multiple status bits designed in the I²C register, the IC also has a hardware status output pin (STAT). The status of STAT in different cases is shown Table 1.

Table 1: Operation Indications

Charging State	STAT
Charging	Low
Charging complete, sleep mode, charge disable	High
Charging suspended	Blinking at 1Hz
Battery floating	Blinking at 1Hz

Safety Timer

The IC provides both a pre-charge and complete-charge safety timer to prevent an extended charging cycle due to abnormal battery conditions. The total safety timer for both trickle charge and pre-charge is one hour when the battery voltage is lower than V_{BATT_PRE}. The complete charge safety timer starts when the battery enters fast charge. User scan program the fast-charge safety timer through the I²C. The safety timer feature can be disabled via the I²C. The safety timer does not operate in boost mode.

The safety timer is reset at the beginning of a new charging cycle. The following actions can restart the safety timer:

- A new charge cycle is kicked in.
- Write reg05 bit[3] from 0 to 1 (safety timer enable).
- Write reg01 bit[7] from 0 to 1 (software reset) with reg0B bit[6] = 1.

12/7/2018

The IC can suspend the timer automatically when any fault occurs.

Input Voltage-Based and Input Current-Based Power Management

To meet the maximum current limit in the USB specification and avoid overloading the adapter, the IC features both input-current and the input-voltage power management by monitoring the input current and input voltage continuously. The total input current limit can be programmed in the IC to prevent the input source from being overloaded. When the input current reaches the limit, the charge current tapers off to keep the input current from increasing further.

If the preset input current limit is higher than the adapter rating, the back-up input voltage-based power management also works to prevent the input source from being overloaded. When the input voltage falls below the input voltage regulation point due to the heavy load, the charge current is also reduced to keep the input voltage from dropping further.

System Over-Current Protection (OCP)

The IC also features a system over-current threshold (OCP) in charge mode. If the current still exceeds the OCP current (4.5A) after 3ms of blanking time, Q2 turns off. A fast-off function turns Q2 off quickly when the system current exceeds 8A. After 300ms, Q2 turns on again to check if OCP has been removed or not.

Negative Temperature Coefficient (NTC) Thermistor

The IC monitors the battery's temperature continuously by measuring the voltage at the NTC pins. This voltage is determined by the resistor divider, whose ratio is produced by different resistances of the NTC thermistor under different ambient temperatures of the battery.

The IC sets a pre-determined upper and lower bound of the range internally. If the voltage at NTC exits this range, the temperature is outside of the safe operating limit. At this time, charging stops unless the operating temperature returns to the safe range.

To satisfy the JEITA requirement, there are four temperature thresholds: cold battery threshold ($T_{NTC} < 0^{\circ}C$), cool battery threshold ($0^{\circ}C < T_{NTC} < 10^{\circ}C$), warm battery threshold ($45^{\circ}C < T_{NTC} < 60^{\circ}C$), and hot battery threshold ($T_{NTC} > 60^{\circ}C$).

For a given NTC thermistor, these temperatures correspond to V_{COLD} , V_{COOL} , V_{WARM} , and V_{HOT} . The normal battery threshold is $10^{\circ}\text{C} < T_{\text{NTC}} < 45^{\circ}\text{C}$. Please note that these temperature values are only valid with the default BOM.

When $V_{NTC} < V_{HOT}$ or $V_{NTC} > V_{COLD}$, charging is suspended. When $V_{HOT} < V_{NTC} < V_{WARM}$, the battery regulation voltage (V_{BATT_REG}) is reduced by 150mV compared to the programmed threshold. When $V_{COOL} < V_{NTC} < V_{COLD}$, the charging current is reduced to half of the programmed charge current.

NTC protection can be disabled via reg07 bit[3]. When reg07 bit[3] is set to 0, NTC is disabled, and VREFNTC is disconnected from VCC.

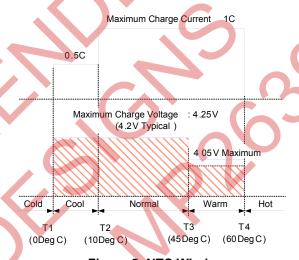


Figure 5: NTC Window

Input USB BC1.2 Detection

The IC features an input source-type detection. which includes the standard BC1.2 detection and the proprietary charger detection with I²C Programmable DP1/DM1 control. User can force USB BC1.2 detection in the host mode by writing 1 to reg0B bit[0].

BC1.2 detection starts with data contact detection (DCD). If DCD detection is passed, the standard downstream port (SDP), dedicated charging port (DCP), and charging downstream port (CDP) can be distinguished by the following primary detection and secondary detection. If the DCD timer expires, the proprietary charger detection is executed.

Table 2: Input Current Limit vs. USB Type

DP1/DM1 Detection	Reg0F [3:0]
Apple 1A	0010
Apple 2.1A	0011
Apple 2.4A	0100
SDP	0101
CDP	0110
DCP	0111
	1000
Proprietary Charger	1001
	1010

Interrupt to Host (INT)

The IC has an alert mechanism, which can output an interrupt signal via INT pin to indicate the operation to the system by outputting a 400µs low-state INT pulse. All of the below events can trigger an INT output:

- Good input source detected
- Charge is enable
- Pre-charge to CC charge
- · Charge done
- Battery short
- VIN or IN PPM
- Any fault in reg09

The INT output is designed as an open-drain structure and requires an external pull-up voltage source in real operation.

Thermal Regulation and Thermal Shutdown in Charge Mode

The IC monitors the internal junction temperature continuously to maximize power delivery and avoid overheating the chip. When the internal junction temperature reaches the preset limit, the IC starts reducing the charge current to prevent higher power dissipation. When the junction temperature reaches 150°C, the PWM step-down and step-up converters are shutdown.

Battery Current Analog Output

The IC has an IB pin to set the real-time battery current value in both charge and boost mode. The voltage at IB is a fraction of the charge current. It indicates the charge current flowing in and out of the battery during charge and boost mode. Calculate the IB voltage with Equation (1):

$$V_{IB} = I_{BATT} \times 0.4(V) \tag{1}$$

This function is disabled in sleep mode to minimize the battery leakage current.

BOOST MODE OPERATION

The IC is able to supply a regulated 5 - 12V output at SYS to power the system. The IC will not enter boost mode if the battery is below the weak battery threshold to ensure that the battery is not drained. To enable boost mode, the input voltage at VIN must be below 1.0V.

The boost output current limit can be set from 900mA-3.6A via the I²C (reg05 bit[2:0]). During boost mode, the status register reg08 bit[7:6] is set to 11. Boost operation is enabled only when the following conditions are valid:

- V_{BATT} > V_{BATT} UVLO (2.9V)
- V_{IN} < 1V
- Reg0Dh bit[6] = 0

Once boost is enabled, the IC boosts the PMID to 5.2V first. Then the block MOSFET Q2 is regulated linearly with the current limit (I_{OLIM}). When V_{SYS} is charged above 4.75V within 3ms, Q2 is turned on completely. Otherwise, Q2 is turned off and attempts to turn on again after 300ms. In boost mode, the IC employs a fixed, 550kHz, pulse-width modulation (PWM), step-up switching regulator. This regulator switches from PWM operation to pulse-skipping operation at light load.

Battery Under-Voltage Lockout (UVLO) Protection

During boost operation, once the battery voltage is below 2.5V, the boost is latched off, and reg0Dh bit[6] is set to 1. Once the battery is charged again and V_{BATT} is higher than 2.9V, reg0Dh bit[6] is reset to 0.

Boost Over-Current Limit (OCL) and Short-Circuit Protection (SCP)

In normal boost operation, the MP2673 always monitors the current flowing through Q2. When the boost output current exceeds the boost output current limit set via reg05 bit[2:0], the output current loop takes control, and the boost output voltage drops. When VSYS is below the 4V minimum, and VBATT + 200mV, Q2 is turned off. After 300ms, Q2 is turned on again. If VSYS rises above 4.75V within 3ms, Q2 is fully on.Otherwise,Q2 is turned off again.

Thermal Shutdown Protection in Boost Mode

Thermal shutdown protection is also active in boost mode. Once the junction temperature rises above 150°C, the IC enters thermal shutdown. The IC does not resume normal operation until the junction temperature drops below 120°C.

Sleep Mode

When the input power source is missing and boost is disabled, the IC enters sleep mode. During sleep mode, all MOSFETs are turned off to minimize leakage and extend the battery run time.

Boost Output Voltage Setting

The boost output voltage is set by the external resistor divider from PMID to FB to GND. Refer to the Typical Application Circuit for more detail.

Impedance Compensation for Boost Output

The IC allows users to compensate for the intrinsic resistance of Q2 and the USB2 output cable voltage drop by adjusting the boost output voltage according to the system load current. Additionally, a maximum allowed regulated voltage is also set for the safety condition using Equation (2):

 $V_{BST_SYS} = V_{OUT(BST)} + (I_{SYS} \times R_{SYS_COMP})$ (2)

Where V_{BST_SYS} is the boost regulation voltage, $V_{OUT(BST)}$ is the system boost voltage set via the I^2C , I_{SYS} is the real-time system load current during the operation, and R_{SYS_COMP} is the line resistance compensation setting in reg01 bit[3:1].

Four-LED Driver for Voltage-Based Battery

The IC provides four LED drivers for voltagebased fuel gauge indication. When USB1 is present, LED1-LEDx is on with the highest bit blinking. When USB2 is plugged in and boost is enabled, LED1-LEDx blinks until the boost is turned off. Table 3 shows four-LED indication.

The LEDx indication can be controlled by the host as well. The host determines the LED1-LEDx on/off function according to the battery voltage result in reg12 and sends a control command to reg13 bit[3:0].

During the voltage measurement, the battery impedance should be compensated via the I²C reg06 bit[7:5] based on the battery current to get a precise battery voltage.

Table 3: Four-LED Indication Table

Mode	V _{BATT}	soc	LED1	LED2	LED3	LED4
	V _{BATT} <3.6V	<25%	Flash	Off	Off	Off
	[3.6V, 3.8V)	[25%, 50%)	On	Flash	Off	Off
Charging	[3.8V, 4.0V)	[50%, 75%)	On	On	Flash	Off
Onling	CV mode,[4.0V, 4.2V), not terminated	[75%, 100%)	On	On	On	Flash
	V _{BATT} ≥4.0, terminated	100%	On	On	On	On
	V _{BATT} ≥4.05V	>75%	Flash	Flash	Flash	Flash
	[3.85V, 4.05V)	[50%, 75%)	Flash	Flash	Flash	Off
Discharging (all off after 5s)	[3.65V, 3.85V)	[25%, 50%)	Flash	Flash	Flash	Off
(all off after 35)	[V _{BAT_ULVO} , 3.65V)	[0%, 25%)	Flash	Off	Off	Off
	<v<sub>BAT_ULVO</v<sub>	[0%, 5%)	Off	Off	Off	Off

PB Control

PB is used to control the enable function of boost mode. A low-to-high rising edge wakes up the device and the boost function.

ADC for Battery Voltage

The IC has an integrated ADC that provides the battery voltage with instantaneous measurements in reg12 bit[7:0], which can be used in the battery voltage to customize FG indication.

Series Interface

The IC uses I²C-compatible interface for flexible charging parameters setting and instantaneous device status reporting. The I²C is a bidirectional, two-wire serial interface. Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL).

The I²C interface supports both standard mode (up to 100kbits) and fast mode (up to 400kbits).

Both SDA and SCL are open-drain, bidirectional lines, connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines are high.

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can change only when the clock signal on the SCL line is low. One clock pulse is generated for each data bit transferred.

All transactions begin with a start (S) signal and can be terminated by a stop (P) signal. A high-to-low transition on the SDA line when SCL is high defines a start condition. A low-to-high transition on the SDA line when SCL is high defines a stop condition.

Start and stop conditions are always generated by the master. The bus is considered to be busy after the start condition and free after the stop condition. Every byte on the SDA line must be eight bits long. The number of bytes to be transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge bit. Data is transferred with the Most Significant Bit (MSB)first. If a slave cannot receive or transmit another complete byte of data until it has performed another function, it can hold the clock line (SCL) low to force the master into a wait state (clock stretching). Data transfer then continues when the slave is ready for another byte of data and releases the clock line (SCL).

An acknowledge bit takes place after every byte. The acknowledge bit allows the receiver to signal to the transmitter that the byte was received successfully and another byte may be sent. All clock pulses, including the acknowledge bit, the ninth clock pulse, are generated by the master.

The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line LOW and remains HIGH during the ninth clock pulse. This is the Not Acknowledge signal. The master can then generate either a stop to abort the transfer or a repeated start to begin a new transfer.

After the start, a slave address is sent. This address is seven bits long followed by an eighth data direction bit (read/write). A 0 indicates a transmission (write), and a 1 indicates a request for data (read).

If the register address is not defined, the charger IC sends back NACK and returns to an idle state.

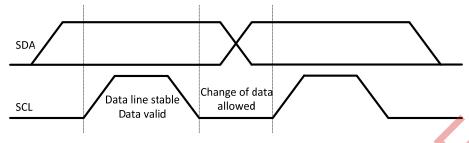


Figure 6: Bit Transfer on the I²C Bus

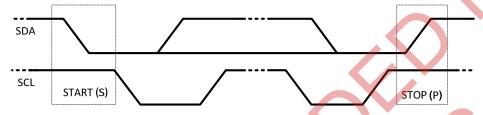


Figure 7: Start and Stop Conditions

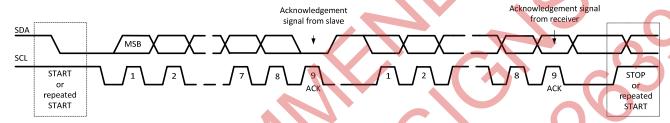


Figure 8: Data Transfer on the I²C Bus

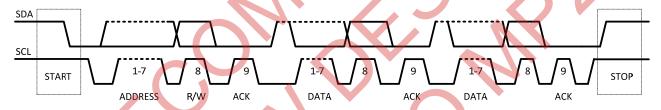


Figure 9: Complete Data Transfer

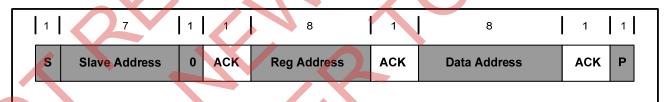


Figure 10: Single Write

Figure 11: Single Read

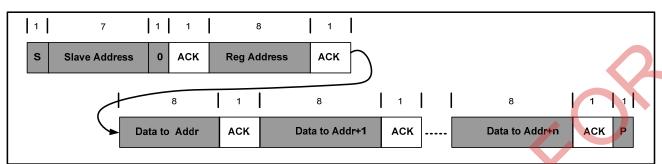


Figure 12: Multi-Write

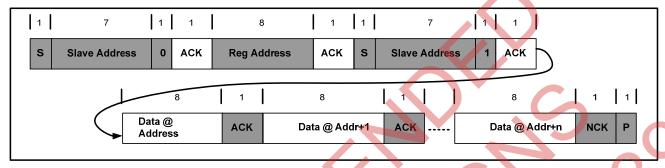


Figure 13: Multi-Read

I²C REGISTER MAP

IC address: 6Bh

Register Name	Address	R/W	Description						
Reg00	0x00	r/w	Input voltage regulation setting and input current limit setting.						
Reg01	0x01	r/w	USB2 cable impedance compensation and register reset enable.						
Reg02	0x02	r/w	Charge current setting and safety timer setting.						
Reg03	0x03	r/w	Pre-charge current setting and termination current-level setting.						
Reg04	0x04	r/w	Battery regulation voltage, Pre-Charge to CC threshold and auto- recharge threshold setting.						
Reg05	0x05	r/w	Boost output current limit setting and charge termination setting.						
Reg06	0x06	r/w	Battery impedance compensation and junction temperature loop setting.						
Reg07	0x07	r/w	Miscellaneous control.						
Reg08	0x08	r	Status register.						
Reg09	0x09	r	Fault register.						
Reg0A	0x0A	N/A	Part information.						
Reg0B	0x0B	r/w	USB1 control register.						
Reg0C	0x0C	r/w	USB2 protocol control register.						
Reg0D	0x0D	r	USB1 and USB2 status register.						
Reg0E	0x0E	r	USB1 status register.						
Reg0F	0x0F	r	USB1 detection results.						
Reg12	0x12	r	Battery real percentage against to the battery regulation voltage.						
Reg13	0x13	r	LEDs indication control.						

Reg00h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	EN_HIZ	0	Υ	N	r/w	0:disable 1:enable	Turn off Q1, Q2, Q3, Q4.
6	VIN_REG [3]	1	Υ	Y	r/w	640mV	Input voltage clamp limit
5	V _{IN_REG} [2]	0	Y	Y	r/w	320mV	setting.
4	V _{IN_REG} [1]	1	Y	Y	r/w	160mV	Offset: 3.88V/7.68V/10.72V Range: 0 to 1.2V
3	VIN_REG [0]	0	Y	Y	r/w	80mV	Default: 800mV (4.68V)
2	I _{IN_LIM} [2]	1	Y	Y	r/w	000: 100mA 001: 500mA 010: 1000mA	
1	I _{IN_LIM} [1]	0	\	Y	r/w	011: 1500mA 100: 1800mA	Input current limit setting. Default: 1.8A
0	I _{IN_LIM} [0]	0	Y	Y	r/w	101: 2100mA 110: 2400mA 111: 3000mA	

Reg01h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	REG_RST	0	Y	Y	r/w	0:keep current setting 1:reset	Used to reset all registers to default. After the reset, this bit goes back to 0 automatically.
6	WTD_TMR _RST	0	Y	N	r/w	0:normal 1:reset	Used to reset the watchdog timer. After the reset, this bit goes back to 0 automatically.
5	Q2_EN	0	Υ	N	r/w	0: Q2 disable 1: Q2 enable	Only valid when reg0Bhbit[6] = 1.
4	BST_EN	0	Υ	Υ	r/w	0:boost disable 1:boost enable	Only valid when reg0Bhbit[6] = 1.
3	Rsys_cmp [2]	0	Υ	Υ	r/w	80mΩ	Used to compensate for the
2	R _{SYS_CMP} [1]	0	Υ	Υ	r/w	40mΩ	USB cable voltage drop.
1	R _{SYS_CMP} [0]	0	Υ	Υ	r/w	20mΩ	Default: 0mΩ
0	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.

Reg02h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Існо [5]	0	Υ	Y	r/w	3200mA	
6	Існо [4]	0	Υ	Υ	r/w	1600mA	Charge current setting.
5	Існо [3]	1	Y	Y	r/w	800mA	RS1:10mΩ
4	Існо [2]	0	Υ	Y	r/w	400mA	Offset: 500mA Range: 500mA - 5A
3	Існо [1]	1	Y	Y	r/w	200mA	Default: 1500mA
2	Існу [0]	0	Y	Y	r/w	100mA	
1	CHG_TMR [1]	1	Y	Υ	r/w	00: 5hrs 01: 8hrs	Charge cycle timer setting, if the timer expires, charging
0	CHG_TMR [0]	1	Υ	Y	r/w	10: 12hrs 11:20hrs	stops. Default: 20hrs

Reg03h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	I _{PRE} [3]	0	Υ	Υ	r/w	800mA	
6	I _{PRE} [2]	0	Υ	Υ	r/w	400mA	RS1: 10mΩ Offset: 100mA
5	I _{PRE} [1]	0	Υ	Υ	r/w	200mA	Range: 100mA - 1600mA Default: 200mA
4	I _{PRE} [0]	1	Υ	Υ	r/w	100mA	
3	I _{TERM} [3]	0	Υ	Υ	r/w	800mA	
2	I _{TERM} [2]	0	Υ	Υ	r/w	400mA	RS1: 10mΩ Offset: 200mA
1	I _{TERM} [1]	0	Υ	Υ	r/w	200mA	Range: 200mA -1700mA Default: 200mA
0	ITERM [0]	0	Υ	Υ	r/w	100mA	

Reg04h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	V _{BATT_REG} [5]	1	Y	Y	r/w	800mV	OV
6	V _{BATT_REG} [4]	0	Υ	Y	r/w	400mV	
5	V _{BATT_REG} [3]	1	Y	K	r/w	200mV	Offset: 3.1V
4	V _{BATT_REG} [2]	1	Υ	Υ	r/w	100mV	Range: 3.1 - 4.675V Default: 4.2V
3	VBATT_REG [1]	0	Y	Υ	r/w	50mV	
2	VBATT_REG [0]	0	Y	Y	r/w	25mV	
1	VBATT_PRE	1	Y	Y	r/w	0: 2.8V 1: 3.0V	Default: 3.0V
0	V _{RECH}	1	Y	Y	r/w	0: 100mV 1: 200mV	Default: 200mV

Reg05h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	EN_TERM	1	Y	Υ	r/w	0:disable 1:enable	Default: enable
6	TERM_STA T	0	Y	Y	r/w	0:match I _{TERM} 1:indicate before the actual termination (500mA higher) on STAT	Default: match I _{TERM}
5	WTD_TMR [1]	0	Υ	N	r/w	00:disable timer 01: 40s	Default: 40s
4	WTD_TMR [0]	1	Υ	N	r/w	10: 80s 11: 160s	Delault. 40s
3	EN_TIMER	1	Y	Y	r/w	0:disable 1:enable	Used to enable the charge cycle timer. Default: enable
2	I _{OLIM} [2]	1	Y	Y	r/w	000:900mA 001:1200mA 010:1500mA	7
1	I _{OLIM} [1]	1	Y	Y	r/w	011:1800mA 100: 2000mA	Default: 3600mA
0	Іолм[0]	1	Υ	Υ	r/w	101: 2400mA 110: 3000mA 111:3600mA	00

Reg06h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	RBATT_CMP [2]	0	Y	Υ	r/w	80mΩ	Used to compensate battery internal resistance and
6	RBATT_CMP [1]	0	Υ	Y	r/w	40mΩ	protection IC resistance. Default: 0mΩ
5	RBAT_CMP [0]	0	Υ	Y	r/w	20mΩ	Delault. 011122
4	Reserved	0	N/A	N/A	N/A	N/A	
3	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
2	Reserved	0	N/A	N/A	N/A	N/A	
1	T _{REG} [1]	1	Y	Υ	r/w	00:60°C 01:80°C	Default: 120°C
0	T _{REG} [1]	1	Υ	Y	r/w	10:100°C 11:120°C	Delault. 120 C

Reg07h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	0	Υ	Y	N/A	N/A	Must be set to 0.
6	Reserved	1	N/A	N/A	N/A	N/A	Must be set to 1.
5	Reserved	0	N/A	N/A	N/A	N/A	Must be set to 0.
4	Reserved	0	N/A	N/A	N/A	N/A	Must be set to 0.
3	EN_NTC	1	Υ	Y	r/w	0: disable 1: enable	Default: enable
2	Q1_DIS	0	Υ	N	r/w	0: Q1 is not forced off 1: Q1 is forced off	Default: not forced off
1	INT_MASK [1]	1	Υ	Υ	r/w	0: no INT during CHG_FAULT 1: INT in CHG_FAULT	Default: INI in CHG_FAULT
0	INT_MAST [0]	1	Υ	Υ	r/w	0: no INT during BAT_FAULT 1: INT in BAT_FAULT	Default: INI in BAT_FAULT

Reg08h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	RW	Description	Comment
7	CHIP_STAT [1]	0	Y	Y	r	00: none 01: USB1 is SDP or CDP	
6	CHIP_STAT [0]	0	>	Y	r	10: USB1 is DCP or Apple 11: boost	
5	CHG_STAT [1]	0	>	Υ	L	00: not charging 01: trickle charge	
4	CHG_STAT [0]	0	Y	Y	7	10: constant current charge 11: charge done	
3	PPM_STAT	0	Υ	×	r	0: no PPM 1: VINPPM or IINPPM	
2	PG_STAT	0	7	¥	r	0: VIN not good 1: VIN good	V_{IN} > 3.45V and V_{IN} > V_{BATT} + 200mV
1	THERM_ STAT	0	Y	Υ	r	0: normal 1: thermal regulation	
0	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.

Reg09h

						1	
Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	WATCHDOG _FAULT	0	Y	Z	r	0: normal 1: watchdog timer expiration	
6	BST_FAULT	0	Y	Υ	r	normal SYS short circuit and battery UVLO	
5	CHG_ FAULT [1]	0	Y	Υ	r	000: normal 010: USB1 UV or OV	
4	CHG_ FAULT [0]	0	Y	Υ	r	101: thermal shutdown 110: safety timer expiration	
3	BAT_FAULT	0	Υ	Υ	r	001: battery OVP	
2	NTC_FAULT [2]	0	Υ	Υ	r	000: normal	S
1	NTC_FAULT [1]	0	Υ	Υ	r	001: NTC cold 010: NTC cool 011: NTC warm	
0	NTC_FAULT [0]	0	Y	Υ	r	100: NTC hot	

Reg0Ah

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
5	PN [2]	0	N	N	r		
4	PN [1]	0	N	Ν	7	001:MP2673	
3	PN [0]	1	N	N	۲	"	
2	NTC_TYPE	1	N	Z	r	0:standard 1: JEITA	
1	Rev [1]	0	N	N	r	00: 1 st rev	
0	Rev [0]	1	N	N	r	00. 1 160	

Reg0Bh

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	VIN_DSG	0	Y	Y	w	0: disable VIN discharge 1: enable VIN discharge	
6	I2C_CTRL	1	Y	N	w	1: enable I ² C control mode	1: I ² C mode. The protocol can be implemented step-by-step by the MCU. This bit must be set to 1.
5	USB1_RDY	1	Y	N	w	0: disable USB1 charge 1: enable USB1 charge	
4	DP1/DM1 control [3]	0	Υ	Υ	w	0: keep DP1 = 0.6 and DM1 open 1: set DP1 = 3.3V and DM1 = 3.3V	
3	DP1/DM1 control[2]	0	Υ	Y	w	0: keep DP1 = 0.6 and DM1 open 1: set DP1 = 0.6V and DM1 = 0.6V	5
2	DP1/DM1 control[1]	0	Y	Y	w	0: keep DP1 = 0.6 and DM1 open 1: set DP1 = 3.3V and DM1 = 0.6V	6
1	DP1/DM1 control[0]	0	Y	Y	w	0: keep DP1 = 0.6 and DM1 open 1: set DP1 = 0.6V and DM1 = GND), C ₂
0	Enable USB1 BC1.2 detection	0	Y	Y	w	0: disable USB1 BC1.2 detection 1: start USB1 BC1.2 detection	Used to detect BC1.2. After the reset, this bit goes back to 0 automatically.

Reg0Ch

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	IBATT_PK [2]	1	Υ	Υ	r/w	000: 3.3A	Program the peak current limit
6	IBATT_PK [1]	1	Y	X	r/w	001: 5.7A 010: 4.5A 011: 6.8A	of the switching MOSFETs. In buck mode, these bits should
5	IBATT_PK [0]	1	A	Y	r/w	100: 8A	be set to 100.
4	SYS_DSG	0	Y	Υ	r/w	0: disable SYS discharge 1: enable SYS discharge	
3	Reserved	1	N/A	N/A	N/A	N/A	Bit reserved.
2	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
1	Reserved	0	Y	Υ	r/w	N/A	Bit reserved.
0	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.

Reg0Dh

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
6	BATT_ UVLO	0	Y	Z	r	0: battery not in ULVO 1: battery UVLO	When battery UVLO occurs, this bit is set to 1.Boost is latched off. Only when the battery is charged again and V_{BATT} is higher than 2.9V, this bit is reset to 0.
5	Q2_OC	0	Υ	Y	r	0: Q2 not over current 1: Q2 over current	Reg01h bit[7] > 0 to clear this bit.
4	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
3	PMID_OK	0	Υ	Υ	r	0: PMID voltage is not good 1: PMID voltage is good	.6
2	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
1	USB1_plug _in	0	Y	Y	r	0: USB1 is not plugged in 1: USB1 is plugged in	V_{IN} > 3.45V and V_{IN} > V_{BATT} + 460mV
0	USB1_GT_ 1V	0	Υ	Υ	r	0: USB1 voltage is not greater than 1V 1: USB1 voltage is greater than 1V), (%)

Reg0Eh

Bit	Name	POR	Reset by REG_RST	Reset by WTD	RW	Description	Comment
7	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
5	USB1_OV	0	Υ	¥	5	0: USB1 not over voltage 1: USB1 over voltage	
4	USB1_UV	0	Y	×	r	0: USB1 not under voltage 1: USB1 under voltage	
3	Reserved	0	N/A	N/A	N/A	N/A	
2	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
1	Reserved	0	N/A	N/A	N/A	N/A	Dit reserved.
0	Reserved	0	N/A	N/A	N/A	N/A	

Reg0Fh

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	0	Υ	Υ	r	N/A	Bit reserved.
5	Reserved	0	Υ	Υ	r	N/A	Bit reserved.
4	Reserved	0	Υ	Υ	r	N/A	Bit reserved.
3	USB1_TYPE [3]	0	Υ	Y	r	0000: none 0001: Samsung 1.2V 0010: Apple 1A	
2	USB1_TYPE [2]	0	Υ	Y	r	0011: Apple 2.1A 0100: Apple 2.4A 0101: SDP	Auto-generated by USB1 type
1	USB1_TYPE [1]	0	Y	Y	r	0110: CDP 0111: DCP 1000: proprietary charger	detection.
0	USB1_TYPE [0]	0	Y	Y	r	1001: proprietary charger 1010: proprietary charger	H . C

Reg12h

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description Comment
7	VBATT [7]	0	Υ	Y	۲	VBATT_REG/2
6	VBATT [6]	0	Y	Υ	r	V _{BATT_REG} /4
5	VBATT [5]	0	Υ	Y	r	VBATT_REG/8
4	VBATT [4]	0	Υ	Υ	r	VBATT_REG/16
3	VBATT [3]	0	Υ	Υ	r	VBATT_REG/32
2	VBATT [2]	0	Υ	Υ	5	VBATT_REG/64
1	VBATT [1]	0	Υ	Y	r	VBATT_REG/128
0	VBATT [0]	0	Y	Υ	r	VBATT_REG/256

Reg13h

	9						
Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
6	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
5	Reserved	0	N/A	N/A	N/A	N/A	Bit reserved.
4	EN_LED_ CTRL	0	Υ	N	r/w	0: disable I ² C write FG_LEDs on/off 1: enable I ² C write FG_LEDs on/off	
3	LED[3]	0	Y	N	r/w	0: off 1: on	
2	LED[2]	0	Υ	N	r/w	0: off 1: on	
1	LED[1]	0	Υ	N	r/w	0: off 1: on	,6
0	LED[0]	0	Y	Ν	r/w	0: off 1: on	

OTP MAP

#	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00	N/A		Vin regulation voltag	е			lin limit	
0x02		Charge current N/A						
0x03		Pre-charge current Termination current						
0x04		Battery regulation voltage N/A						/A
0x05		N/A SYS output current limit						limit
0x0B	N	N/A USB1 charge enabled/disabled N/A						

OTP DEFAULT

OTP Items	Default
Vin regulation voltage	800mV Offset: 3.88V/7.68V/10.72V
lin limit	1.8A
Charge current	1500mA
Pre-charge current	200mA
Termination current	200mA
Battery regulation voltage	4.2V
SYS output current limit	3.6A
USB1 charge enabled/disabled	Enable USB1 charge

APPLICATION INFORMATION

NTC Function in Charge Mode

An internal resistor divider sets the temperature threshold (V_{COLD}) and temperature threshold (V_{HOT}) at 71% * V_{VREFNTC} and 48.1% * V_{VREFNTC} respectively. For a given NTC thermistor, select an appropriate R_{T1}and R_{T2} to set the NTC window with Equation (3) and Equation (4):

$$\frac{V_{\text{COLD}}}{V_{\text{VREFNTC}}} = \frac{R_{\text{T2}} /\!\!/ R_{\text{NTC_COLD}}}{R_{\text{T1}} + R_{\text{T2}} /\!\!/ R_{\text{NTC_COLD}}} = T_{\text{COLD}} = 71\% \quad \text{(3)}$$

$$\frac{V_{\text{HOT}}}{V_{\text{VREFNTC}}} = \frac{R_{\text{T2}} \, /\!/ \, R_{\text{NTC_HOT}}}{R_{\text{T1}} + R_{\text{T2}} \, /\!/ \, R_{\text{NTC_HOT}}} = T_{\text{HOT}} = 48.1\% \, \, \text{(4)}$$

Where R_{NTC HOT} is the value of the NTC resistor at the upper bound of its operating temperature range, and R_{NTC COLD} is its lower bound.

The two resistors (R_{T1} and R_{T2}) determine the lower temperature and independently. This flexibility allows the IC to operate with most NTC resistors for different temperature range requirements. Calculate R₁₁ and R_{T2} with Equation (5) and Equation (6):

$$R_{T1} = \frac{R_{NTC_HOT} \times R_{NTC_COLD} \times (T_{COLD} - T_{HOT})}{T_{COLD} \times T_{HOT} \times (R_{NTC_COLD} - R_{NTC_HOT})}$$
(5)

$$R_{T2} = \frac{R_{\text{NTC_HOT}} \times R_{\text{NTC_COLD}} \times (T_{\text{COLD}} - T_{\text{HOT}})}{T_{\text{HOT}} \times (1 - T_{\text{COLD}}) \times R_{\text{NTC_COLD}} - T_{\text{COLD}} \times (1 - T_{\text{HOT}}) \times R_{\text{NTC_HOT}}}$$
(6)

For example, the NCP18XH103 thermistor has the following electrical characteristics:

- At 0°C, R_{NTC} cold = 27.22k Ω .
- At 50°C, R_{NTC} Hot = 4.16k Ω .

Based on Equation (5) and Equation (6), R_{T1} = $3.29k\Omega$ and R_{T2} = 11.46k Ω are suitable for an NTC window between 0°C and 50°C. Choose approximate values (e.g.: $R_{T1} = 3.32k\Omega$ and R_{T2} $= 11.5k\Omega$).

If no external NTC is available, connect R_{T1} and R_{T2} to keep the NTC voltage within the valid NTC window (e.g.: $R_{T2} = 10k\Omega$, $R_{T1} = 5.1k\Omega$).

For convenience, an NTC thermistor design spreadsheet is also provided. Please contact MPS for this spreadsheet if necessary.

Selecting the Inductor

Inductor selection is a trade-off between cost, size, and efficiency. A lower inductance value corresponds with smaller size but also results in higher current ripple, higher magnetic hysteretic losses, and higher output capacitances. However, a higher inductance value benefits from lower ripple current and smaller output filter capacitors but also has higher inductor DC resistance (DCR) loss.

Choose an inductor that will not saturate under the worst-case load condition.

When the MP2673 works in charge mode (as a converter), estimate the inductance with Equation (7):

$$L = \frac{V_{\text{IN}} - V_{\text{BATT}}}{\Delta I_{\text{L}_{\text{MAX}}}} \times \frac{V_{\text{BATT}}}{V_{\text{IN}} \times f_{\text{SW}}}$$
 (7)

Where V_{IN} is the typical input voltage, V_{BATT} is the CC charge threshold, f_{sw} is the switching frequency, and ΔI_{L} MAX is the maximum peak-topeak inductor current (typically 30 - 40% of the CC charge current).

For a typical input voltage (35% inductor current ripple at the corner point between trickle charge and CC charge ($V_{BATT} = 3V$)), the inductance can be determined with Table 4.

Table 4: Input Voltage vs. Inductance

Vin (V)	Ichg (A)	L (µH)
5	3	2.2
9	4	3.0
12	4	3.6

When the MP2673 is in boost mode (as a boost converter), the required inductance value can be calculated with Equation (8), Equation (9), and Equation (10):

$$L = \frac{V_{BATT} \times (V_{SYS} - V_{BATT})}{V_{SYS} \times f_{SW} \times \Delta I_{L_{MAX}}}$$
(8)

$$\Delta I_{L_MAX} = 30\% \times I_{BATT(MAX)} \tag{9}$$

$$I_{\text{BATT}(\text{MAX})} = \frac{V_{\text{SYS}} \times I_{\text{SYS}(\text{MAX})}}{V_{\text{BATT}} \times \eta} \tag{10}$$

Where V_{BATT} is the minimum battery voltage, f_{SW} is the switching frequency, $\Delta I_{L MAX}$ is the peak-topeak inductor ripple current(approximately 30% of the maximum battery current IBATT(MAX)), $I_{SYS(MAX)}$ is the system current, and η is the efficiency.

In a worst-case condition (3V battery voltage, 30% inductor current ripple), the inductance vs. the typical system voltage (V_{SYS} = V_{PMID}) is shown in Table 5 (considering a 90% efficiency).

Table 5: Inductance vs. Typical System Voltage

Vsys (V)	Isys (A)	L (µH)
5	3	1.3
9	2	1.8
12	1.5	2.0

For higher efficiency, select a 2.2µH inductor and minimize the inductor's DC resistance. Use an inductor with a DC current rating no lower than the peak current of the MOSFET.

Selecting the System Capacitor (C_{PMID})

Select C_{PMID} based on the demand of the system current ripple.

In charge mode, C_{PMID} acts as the input capacitor of the buck converter in charge mode. The input current ripple can be calculated with Equation (11):

$$I_{\text{IN_RMS}} = I_{\text{CHG_MAX}} \times \frac{\sqrt{V_{\text{TC}} \times (V_{\text{IN_MAX}} - V_{\text{TC}})}}{V_{\text{IN_MAX}}}$$
(11)

In boost mode, C_{PMID} is the output capacitor of the boost converter. C_{PMID} keeps the system voltage ripple small and ensures feedback loop stability. The system current ripple can be calculated with Equation (12):

$$I_{RMS_MAX} = I_{SYS_MAX} \times \frac{\sqrt{V_{TC} \times (V_{SYS_MAX} - V_{TC})}}{V_{SYS_MAX}}$$
 (12)

Since the input voltage passes to the system $directly(V_{IN MAX} = V_{PMID MAX})$ both charge mode and boost mode have the same system current ripple (see Table 6).

Table 6: Input Voltage vs. System Current

V _{SYS} (V)	Isys (A)
5	3
9	2
12	1.5

The maximum ripple current is about 1A. Select the PMID capacitors based on the ripple current temperature rise (not exceeding 10°C). For best results, use ceramic capacitors with X7R dielectrics with low ESR and small temperature coefficients. For most applications, use three 22µF capacitors.

PCB Layout Guidelines

Efficient PCB layout is critical for specified noise, efficiency, and stability requirements. The following design considerations can improve circuit performance.

- 1. Minimize the high-side switching node (SW, inductor) trace lengths in the high-current paths.
- 2. Keep the switching node short and away from all small control signals, especially the feedback network.
- Place the input capacitor as close to VIN and PGND as possible.
- Place the local power capacitors, connected from the PMID to PGND, as close to the ICas possible.
- Place the output inductor close to the IC.
- Connect the output capacitor between the inductor and PGND of the IC.
- 7 Connect the power pads for VIN, PMID, SYS, SW, BATT and PGND to as many coppers planes on the board as possible for highcurrent applications.

This improves thermal performance because the board conducts heat away from the IC.

Use a star ground design to keep the circuit block currents isolated (power signal / control signal).

This reduces noise-coupling and groundbounce issues. A single ground plane for this design provides good results.

TYPICAL APPLICATION CIRCUIT

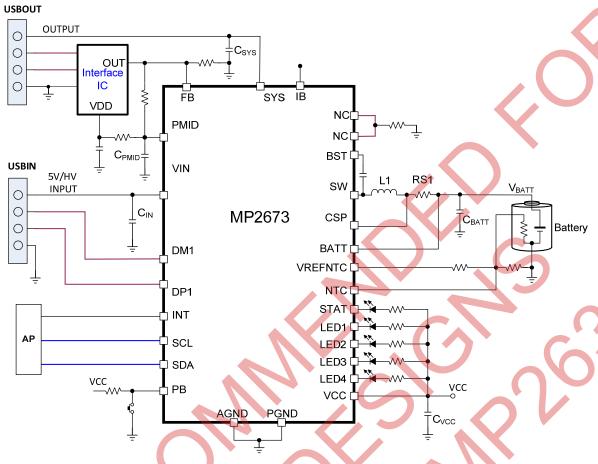
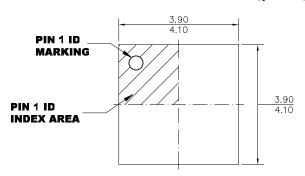
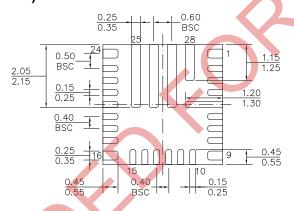


Figure 14: MP2673 for QC3.0 Output App Circuit

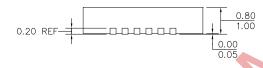
Table 7: Key BOM of Figure 14

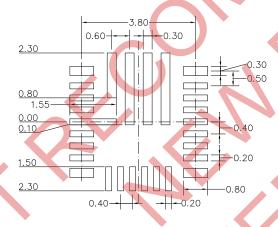
Qty	Ref	Value	Description	Package	Manufacture
1	Cin	10μF	Ceramic Capacitor;16V; X5R or X7R	1206	Any
3	СРМІД	22µF*3	Ceramic Capacitor;16V; X5R or X7R	1206	Any
1	C _{SYS}	1μF	Ceramic Capacitor;16V; X5R or X7R	0603	Any
2	Сватт	22µF*2	Ceramic Capacitor;6.3V; X5R or X7R	0805	Any
1	C _{VCC}	10uF	Ceramic Capacitor;6.3V; X5R or X7R	0603	Any
1	RS1	10mΩ	Film Resistor;1%	1210	Any
1	L1	2.2µH	Inductor;2.2µH;Low DCR;I _{SAT} >8A	SMD	Anv


© 2018MPS. All Rights Reserved.


38

PACKAGE INFORMATION


QFN-28 (4mmx4mm)



TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTE:

- 1) LAND PATTERNS OF PIN 1,9,16 AND 24 HAVE THE SAME LENGTH AND WIDTH.
- 2) LAND PATTERNS OF PIN 25~27 HAVE THE SAME LENGTH AND WIDTH.
- 3) ALL DIMENSIONS ARE IN MILLIMETERS.
- 4) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-220.
- 6) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

12/7/2018