

16V, 15A, 3mΩ R_{DS_ON}, 带电流监控功能的 热插拔保护器件

The Future of Analog IC Technology

描述

MP5022C 是一款热插拔保护器件,用于保护输出端电路不受输入端瞬态的影响。MP5022C 也可以保护输入不受输出短路和瞬态影响。

启动期间,通过设置输出电压上升斜率来限制浪涌电流。输出电压上升斜率由 SS 引脚外接电容控制。

通过采样 FET 拓扑结构来限制最大的输出负载电流。限流值大小由 ISET 与地之间的低功率电阻设置。

由内部充电泵驱动功率器件的栅极来控制具有极低导通电阻(3mΩ)的功率 FET 导通。

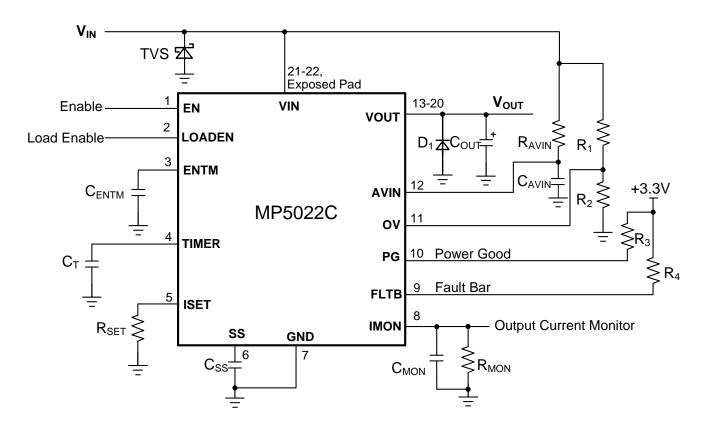
MP5022C 还包含 IMON 功能,可通过设置 IMON 与地之间的电阻值,生成与器件电流成正比的电压。

同时具有全方位的保护特性,包括限流保护、过温保护、受损 MOSFET 检测、过压保护(OVP)和欠压保护(UVP)。

MP5022C 采用 QFN-22 (3mmx5mm) 封装。

特性

- 输入电压范围: 4.5V 至 16V
- 集成 3mΩ 功率 MOSFET
- 可调限流功能
- 输出电流测量
- ±3%电流监控精度 (6A < lo < 15A)
- 短路保护快速响应(<200ns)
- PG 检测和 FLTB 指示
- VIN = 0 时, PG 置低
- 输入-输出短路检测
- 外部软启动功能
- 可编程的 LOADEN 消隐时间
- 带迟滞的可配置过压锁定
- 欠压锁定(UVLO)
- 过温保护
- 采用小尺寸 QFN-22 (3mmx5mm) 封装


应用

- 热插拔
- PC卡
- 硬盘驱动
- 服务器
- 网络应用
- 笔记本电脑

所有 MPS 产品都保证无铅,无卤素,并且遵守 RoHS 规范。如需查询具体芯片环保等级,请访问 MPS 官网之质量保证。"MPS"和"The Future of Analog IC Technology"均为 MPS 注册商标。

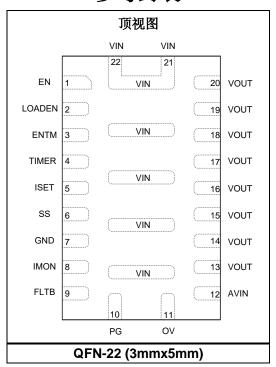
典型应用

订购信息

产品型号*	封装	顶标
MP5022CGQV	QFN-22 (3mmx5mm)	见下文

^{*}对于编带和卷盘包装,请添加后缀-Z(例如 MP5022CGQV-Z)

顶标


<u>MPYW</u> <u>5</u>022 CLLL

MP: MPS 前缀 Y: 年份代码 W: 周代码

5022C: 产品型号前5位

LLL: 批次号

参考封装

<i>热阻</i> ⁽⁴⁾	$oldsymbol{ heta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
QFN-22 (3mmx5mm)	46	10°C/V	٧

注:

- 1) 超过这些限定值可能会损坏芯片。
- 2) 最大可允许耗散功率是最大结温 T_J(MAX)、结温-环境热阻 θ_{JA}和环境温度 T_A的函数。任何环境温度下允许的最大连续耗散功率由 P_D(MAX) = (T_J(MAX)-T_A)/θ_{JA} 计算得出。超过最大允许耗散功率会使芯片温度过高,导致稳压器进入热保护状态。内部热保护电路保护芯片免受永久性损坏。
- 3) 设备不能保证在其工作条件之外运行。
- 4) 上述数据是在 JESD51-7(4 层板)上测量所得。

电气特性

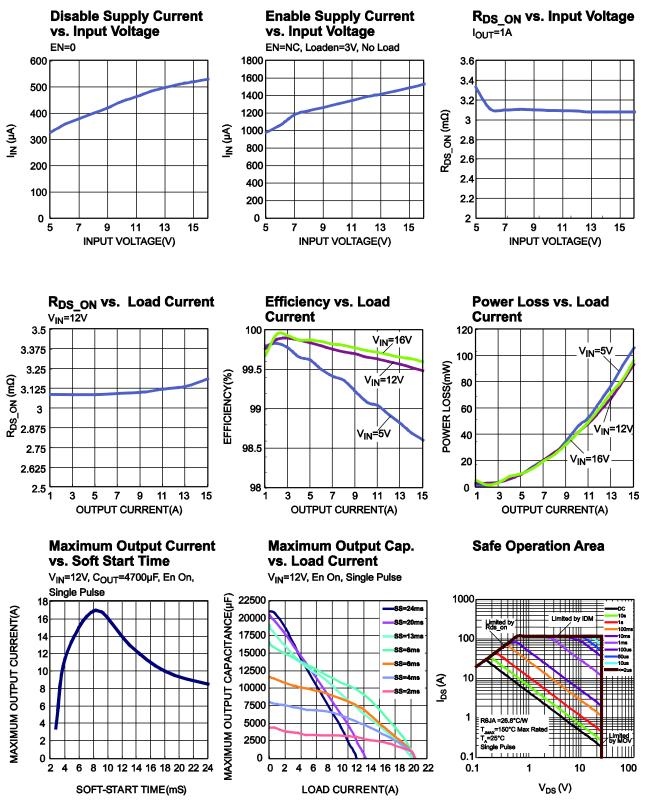
测试条件为 V_{IN} = 12V, R_{SET} = 10.2k, C_{OUT} = 470 μ F, T_J = 25°C, 除非另有注明。

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电流	•		'			•
		EN = 高电平,空载		1.3	2.0	mA
静态电流	lα	故障锁定		1.3		mA
		$EN = 0$, $V_{IN} = 16V$			700	μA
功率 FET		T	T	1	1	1
通态电阻	R _{DS(ON)}	$T_J = 25^{\circ}C$		3	4	mΩ
	, ,	$T_J = 85^{\circ}C^{(5)}$		3.8	4.8	
关断漏电流	loff	$V_{IN} = 24V, EN = 0V$			1	μA
最大连续电流(5)	I _{OUT_MAX}		15			Α
过温关断保护	1		u.	•		
关断温度 ⁽⁵⁾	tsтD			145		°C
欠压保护(UVLO)						
输入欠压保护阈值	V _{IN UVLO}	输入电压 上升阈值		4.15V	4.4	V
输入欠压保护阈值迟滞	V _{IN} uvlohys			0.25		V
LOADEN						
低电平输入电压	V _L				0.9	V
高电平输入电压	V _H		2.3			V
软启动(SS)						
SS上拉电流	Iss	Vss = 0V	10	12.5	15	μΑ
限流	·					
正常工作下的限流值	I _{Limit_NO}	R _{SET} = 10.2k	11.34	12.6	13.86	Α
过流响应时间(5)	t _{CL}			20		μs
二次限流值	I _{LimitH}	任意 R _{SET}		36		Α
短路保护响应时间(5)	t _{SC}			200		ns
输出电流监控	1		U.	•		
中沙立林區大		6A < I _{OUT} < 15A	9.7	10	10.3	μA/A
电流采样增益	Aimon	3A < Iоит < 6A	9.5	10	10.5	μΑ/A
最大 IMON 电压	VIMON				3	V
计时器	<u>.</u>		•			
上升电压阈值	V _{TMR} H		1.2	1.24	1.28	V
插入延时充电电流	Insert		34.5	43	51.5	μA
故障检测充电电流	I _{FLTD}		175	215	255	μA
放电 R _{DS(ON)}	R _{FLTE}	I _{OUT} < I _{Limit}		35	70	Ω
LOADEN 消隐时间 (ENTM)		l .	I	1	ı	I .
上升电压阈值	Ventmrh		1.2	1.24	1.28	V
充电电流	lentmcc		0.8	1.1	1.4	μA
,		I	0.0			·

电气特性 (续表)

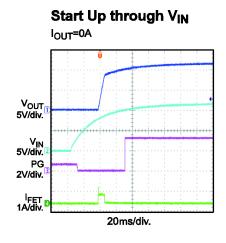
测试条件为 V_{IN} = 12V, R_{SET} = 10.2k, C_{OUT} = 470 μ F, T_{J} = 25°C,除非另有注明。

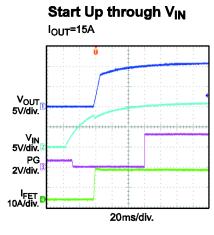
参数	符号	测试条件	最小值	典型值	最大值	单位
使能						
上升阈值	VENRS		1.258	1.325	1.391	V
迟滞	VENHYS			170		mV
过压(OV)						
OV 阈值	$V_{\text{OV_TH}}$	Vov上升	1.2	1.24	1.28	V
OV 阈值迟滞	V _{OV_HYS}	Vov下降		90		mV
故障汇总(FLTB)/电源正常(PG)						
低电平输出电压	V_{OL}	灌电流 1mA			0.2	V
故障汇总关断漏电流	I _{FLT_LKG}	V _{FLTB} = 3.3V			1	μA
故障传输延迟	t PDE	ISET 降至 1V 直至 FLTB 下拉		8	16	μs
PG 上升阈值 ⁽⁵⁾	PG∨th_Hi			90%		Vin
PG 下降阈值	PG _{Vth_Lo}			75%	80%	V _{IN}
PG 关断漏电流	I _{PG_LKG}	$V_{PG} = 3.3V$			2.5	μA
PG 低电平输出电压	V _{OL_100}	V _{IN} = 0V, 通过 100kΩ 电阻 上拉至 3.3V		600	720	mV
	V _{OL_10}	V _{IN} = 0V, 通过 10kΩ 电阻 上拉至 3.3V		720	870	mV

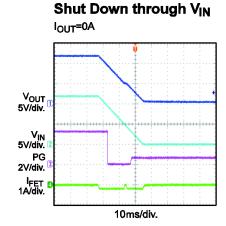

NOTE:注:

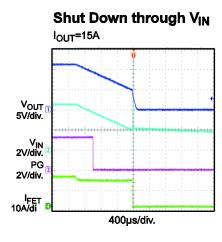
5) 由设计保证。

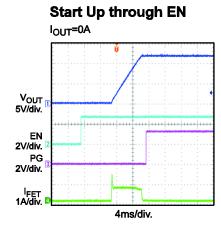
典型性能特性

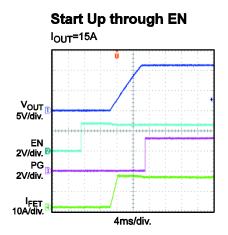

测试条件为 V_{IN} = 12V, C_{OUT} = 470μF, C_{ENTM} = 1μF, C_T = 220nF, C_{SS} = 47nF, R_{SET} = 6.8k Ω , T_A = +25°C , 除非另有注明。

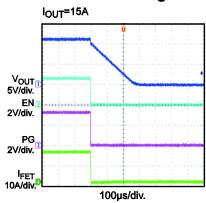


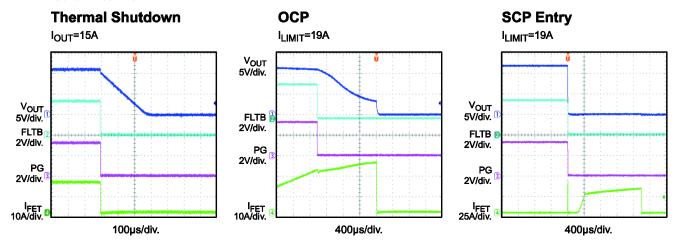


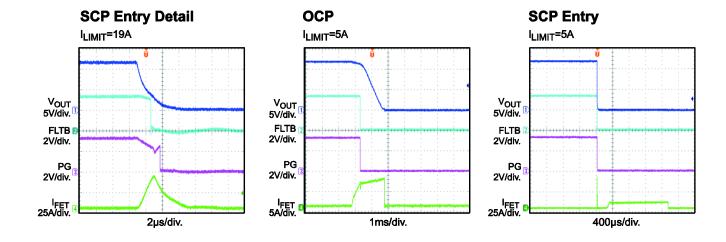

典型性能特性 (续表)

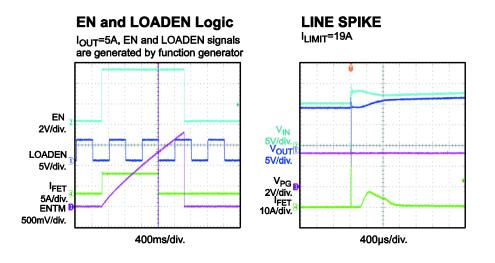

测试条件为 $V_{IN}=12V$, $C_{OUT}=470\mu F$, $C_{ENTM}=1\mu F$, $C_{T}=220nF$, $C_{SS}=47nF$, $R_{SET}=6.8k\Omega$, $T_{A}=+25^{\circ}C$,除非另有注明。






Shut Down through EN





典型性能特性 (续表)

测试条件为 V_{IN} = 12V, C_{OUT} = 470 μ F, C_{ENTM} = 1 μ F , C_T = 220nF, C_{SS} = 47nF, R_{SET} = 6.8k Ω , T_A = +25°C ,除非另有注明。

引脚功能

引脚#	名称	描述
1	EN	使能输入。EN 与 LOADEN 共同作用于主功率管的开通和关断。EN 内部上拉至高电平。
2	LOADEN	负载使能输入。与 EN 共同作用于主功率管的开通和关断(见表 1)。在 LOADEN 消隐时间过后,LOADEN 也可以用于关断功率开关,但不能再次开启。
3	ENTM	LOADEN 消隐时间设置。连接一个外部电容来设置 LOADEN 消隐时间。一旦 EN 置高,计时器便开始计时,LOADEN 被消隐。在故障/EN 低电平时,开关会关断,但在消隐时间内 LOADEN 低电平则不起作用。
4	计时器	计时器设置。 由外部电容设置热插拔插入时间延迟和故障暂停时间。
5	ISET	限流设置。在 ISET 和接地之间接一个电阻,用来设置过流限值。
6	SS	软启动。 由连接到 SS 引脚处的外部电容来设置输出电压的软启动时间。由内部电路控制启动时的输出电压转换速率。SS 浮空软启动时间将设置到最小值(1ms)。
7	GND	地。
8	IMON	输出电流监控。IMON 提供了一个与流经功率设备电流成正比的电压值。当电路处于 0A 至 15A 之间时,在接地处放置一个 10kΩ 的电阻(R _{MON}) 来生成 0V 至 1.5V 的电压。在应用电路中,需在 R _{MON} 处并联一个 10nF 以上的电容。
9	FLTB	故障汇总。在过流或过温关断时,FLTB 为开漏输出,输出将被拉至地。可通过一个 10-100kΩ 的电阻将 FLTB 上拉至外部电源。
10	PG	电源正常指示。PG 为一个开漏输出。可通过一个 10-100k Ω 的电阻将 PG 上拉至外部电源。PG 高电平表示电源正常。
11	OV	过压使能输入。上拉 OV 至高电平,关断内部 MOSFET。连接 OV 至外部电阻分压器来设置过压阈值。
12	AVIN	用于 VCC 子调节器的内部电源。在 VIN 与 AVIN 之间连接一个 49.9Ω, 0603 封装的电阻,并在 GND 处连接一个 2.2μF 的旁路电容,以确保当 VOUT 至 GND 之间发生短路导致 VIN下降时,仍能正常工作。
13-20	VOUT	输出。VOUT 是指由 IC 控制的电压。必须在 VOUT 与 GND 之间接一个肖特基二极管,用来吸收负电压尖峰。
21, 22, 散 热焊盘	VIN	输入电源。

功能框图

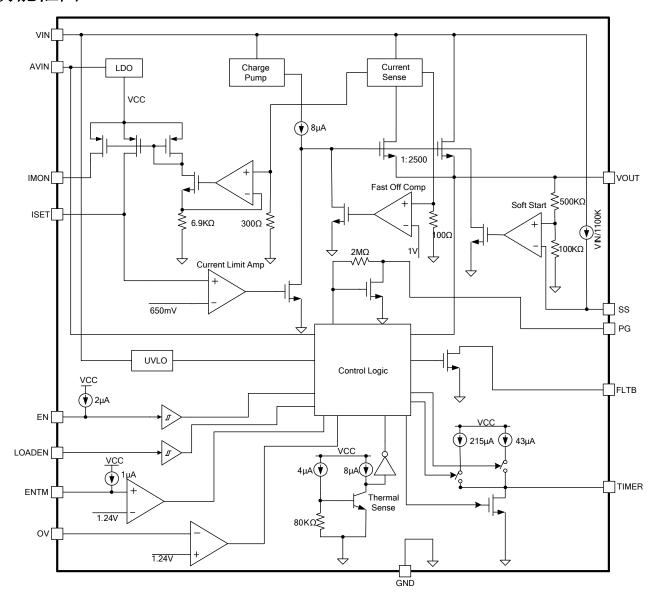


图 1: 功能框图

工作原理

MP5022C 用于限制将电路板插入带电背板电源时产生的负载的浪涌电流,从而限制背板的电压降和负载电压的 dV / dt。MP5022C 集成了输入电压、输出电压、输出电流以及芯片温度的监控功能,无需外接采样功率电阻、功率 MOSFET 和温度采样器件等。

限流

MP5022C 提供了稳定的限流值,限流值大小可通过外部电阻进行编程。一旦器件电流达到限流阈值,内部电路就会通过调节栅极电压将功率 FET 电流保持在恒定值。为了限制电流,栅极-源极的电压必须保持在 4V 至 1V 左右。典型响应时间大约为 20µs。在响应时间内,输出电流可能存在一个很小的过冲。

当达到电流限后,故障计时器便开始计时。如果在故障暂停时间结束之前,输出电流降至电流限流阈值以下,则 MP5022C 恢复至正常工作。否则,如果限流时间超过故障暂停时间,则功率 FET 被锁定。

当芯片达到过流或过温阈值,FLTB 将被拉低,此时有大约 8µs 的延迟才能指示故障。正常工作时的限流值是外部限流电阻的函数。

短路保护(SCP)

如果负载电流由于发生短路而迅速增加,其电流值可能在控制环路能够响应之前就会超过限流阈值。如果电流达到 36A 的二次限流值,内部快速关断电路动作,通过一个 100mA 下拉栅极放电电流来关断功率 MOSFET (见图 2)。通过限制流过器件的峰值电流来限制输入电压跌落。短路总响应时间大约为 200ns.。

当触发短路保护时,芯片重启来确定过载情况是否存在。如果是由输入线路瞬态导致的短路,则芯片可以正常工作。如果发生了真实的短路,则芯片完全锁定(见图2和图3)。

一旦达到 36A 的限流值,则 FLTB 置低,并保持低电平直至短路消除。

故障计时器和重启

当电流达到限流阈值,内部 215μA 的故障计时器电流源对 TIMER 的外部电容(C)进行充电。在 TIMER 达到 1.24V 之前,如果过流保护状态消失,则 MP5022C 恢复至正常工作模式并且在过流保护消除后立即释放 TIMER。如果在 TIMER 达到 1.24V 之后,仍显示为过流保护状态,则关断功率 FET。可通过公式(1)确定 C_T 的电容值:

$$C_{T} = \frac{215 \cdot t_{fault}}{1.24} \tag{1}$$

其中 C_T 为故障计时器电容(nF), t_{fault} 为故障计时 (ms)。比如,100nF 电容会产出 0.58ms 的故障计时。

此外,这个故障计时电容也决定了启动时的插入延迟计时。

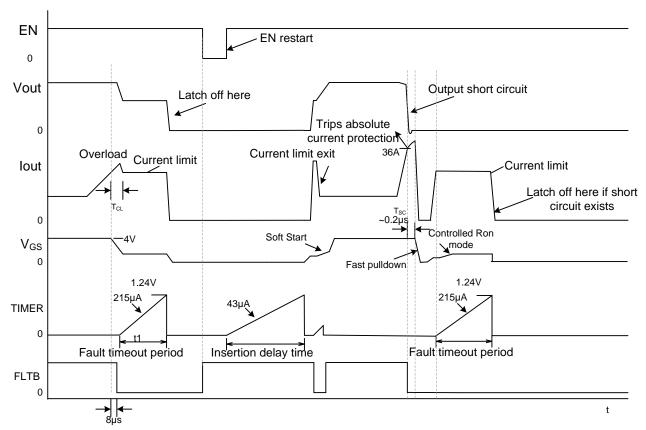


图 2: 过流保护

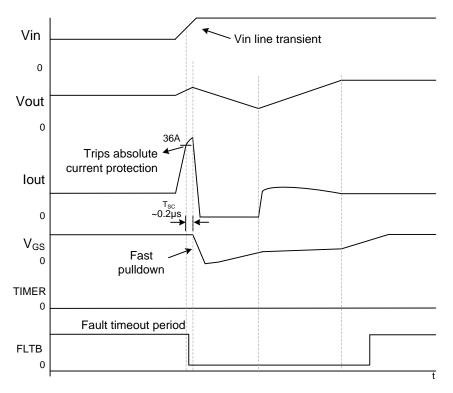


图 3: V_{IN}线路瞬态响应

电源正常 (PG)

电源正常(PG)用来指示输出电压是否处于输入电压对应的正常范围内。PG 也是开漏 FET 结构。通过一个 10-100kΩ 的电阻将 PG 上拉至外部电源。启动时,PG 置低,显示系统处于关闭状态,这能最大限度地减少 VOUT 上的负载,以降低浪涌电流和启动时的功耗。

当芯片符合以下条件时,PG信号上拉至高电平:

- $V_{OUT} > 90\% * V_{IN}$
- V_{GS} > 3V
- $V_{OUT} > V_{IN} 0.8V$

一旦满足这些条件,系统可以全功率运行。

当 V_{OUT} < 75% * V_{IN} , PG 拉低。当 EN 低于其阈值时,PG 输出下拉至低电平。在没有输入的情况下,PG 在上拉电源存在的情况下,保持在低电平。

故障汇总(FLTB)

故障汇总(FLTB)是一个开漏输出,用于显示是 否发生故障。通过一个 10-100kΩ 的电阻将 FLTB 上拉至外部电源。

当芯片过流、过温,或者 MOSFET 上电前短路,故障输出在大约 8µs 延迟后拉低。如果芯片发生短路并达到 36A 的二次限流值,则 FLTB 立即拉低。

当 MP5022C 恢复正常工作后,FLTB 恢复高电平。这意味着输出电压高于 PG 上升阈值设置的电压,且功率 FET 完全开通 (V_{GS} > 3V)。

PG 和 FLTB 外部上拉电压

PG 和 FLTB 引脚需要一个外部电源。即使 $V_{IN}=0$ 且 EN 禁用时,PG 的开漏输出也可以通过外部上拉电压工作。PG 和 FLTB 分别通过 10-100kΩ 的上拉电阻接至外部电源。

上电时序

对于热插拔应用来说,MP5022C 的输入会在热插拔时承受电压尖峰/瞬态。这是由输入电路中的寄生电感和输入电容引起的。为了稳定输入电压,需要在主功率 FET 开启之前采用一个插入延迟。当输入电压达到 UVLO 阈值时,TIMER 会通过一个 43μ A 恒流源向外部电容(C_T)充电。当 TIMER 电压达到 1.24V 时,插入延迟结束。可通过公式 (2)确定 C_T 的电容值:

$$C_{T} = \frac{43 \cdot t_{\text{delay}}}{1.24} \tag{2}$$

其中 C_T 为插入延迟计时器电容(nF), t_{fault} 为插入延迟时间 (ms)。比如,100nF 的电容会产出 2.9ms 的插入延迟。

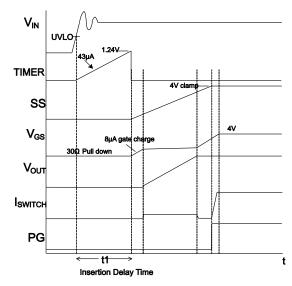


图 4: 启动时序

此外, TIMER 外接电容还将决定故障计时的时间, 详细内容请见第 12 页上的故障计时器和重启章节。

TIMER 达到 1.24V 之后,8µA 电流源开始给功率 FET 栅极充电,栅极电压上升。同时,TIMER 电压放电直至为零。一旦栅极电压达到其阈值 (Vesth),输出电压开始上升。上升时间由软启动电容决定。

软启动(SS)

软启动时间由连接至 SS 引脚的电容决定。当插入 延迟时间结束后, SS 引脚内部与输入电压成正比 的恒流源给外接电容充电, 使其电压以相应的斜 率升高,输出电压将以相同的斜率上升。

SS 电容值可以根据以下公式(3)计算得出:

$$C_{SS} = \frac{6 \cdot t_{SS}}{R_{SS}} \tag{3}$$

其中, t_{SS} 为软启动时间, R_{SS} 为 $1.1M\Omega$ 。例如,47nF 的电容软启动时间为 8.6ms。

如果负载电容非常大,那么用于维持预设软启动时间的电流将会超过限流值。这种情况下,上升时间由负载电容和限流值控制。

SS 浮空,输出电压将快速上升。通过一个 8μA 的电流源升高 FET 的栅极电压。栅极充电电流控制输出电压的上升时间,最小的软启动时间近似为 1ms。

EN 和 LOADEN

EN 和 LOADEN 用于控制 MP5022C 的开启/关断 (见表 1)。

在 LOADEN 消隐期间,EN = 1 就可以开通芯片。在 LOADEN 消隐时间过后,必须 EN = 1 和 LOADEN = 1 才能开通器件。在任何时候,EN = 0 均可用于关闭芯片。一旦芯片被锁定,需重启 EN 或 VIN 才能使芯片重启。

表 1: EN/LOADEN 消隐时间

LOADEN 消隐时间超时?	EN	LOADEN	状态
N	0	0	Off
N	0	1	Off
N	1	0	On
N	1	1	On
Y	0	0	Off
Υ	0	1	Off
Y	1	0	Off
Y	1	1	On

注:在 LOADEN 消隐时间过后,LOADEN 也可以用于关断功率开关,但不能再次开启(见图 5)。

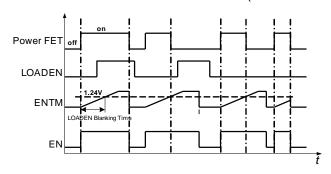


图 5: EN/LOADEN 时序图

EN由一个2µA的内部上拉电源拉高至高电平。

一旦芯片启动,插入延迟计时器会开启。当插入延迟时间结束,内部 8µA 的电流源对功率 FET 栅极充电。充电大约 1ms 后 V_{GS} 达到阈值,然后输出电压以 SS 斜率上升。

LOADEN 消隐时间

假设 EN 为高电平,消隐时间内的 LOADEN 无效,该消隐时间可以进行设置 (见图 6)。在启动过程中,所有的故障功能都是有效的,所以如果检测到故障,电源开关就会关闭。然而,如果消隐期间 LOADEN 为低电平,则无法关闭开关。消隐时间结束后 LOADEN 恢复正常。

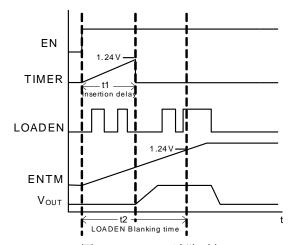


图 6: LOADEN 消隐时间

消隐时间可以通过接在 ENTM 处的电容进行设置。外接电容可以根据以下公式(4)计算得出:

$$C_{ENTM} = \frac{t_{LDNB} \cdot 10^{-6}}{1.24}$$
 (4)

其中 t_{LDNB}为 LOADEN 消隐时间,C_{ENTM}为 ENTM 外接电容。例如,1μF 的电容软启动时间为1.24s。

如果不使用 LOADEN,则需将 ENTM 连接至 GND。

输入-输出短路检测

在启动期间,MP5022C 将输出电压超过 V_{IN} - 0.8V 视为 MOSFET 短路。FLTB 拉低来显示处于故障状态,同时开关器件保持关闭状态。一旦 $V_{OUT} \le V_{IN}$ - 0.8,芯片则会正常启动。

内部 VCC 稳压源

MP5022C 含有一个内部 4V 线性稳压源,通过输入降压电路,产生 4V 偏置电源,为低压电路供电。当 V_{IN} 超过其 UVLO 阈值且 EN 为高电平时,稳压器使能。

AVIN

AVIN 为内部 VCC 稳压源的供电输入。在 VIN 与 AVIN 之间连接一个 49.9Ω 大小的电阻,并在 GND 处连接一个 2.2 μF 的旁路电容,以确保当 VOUT 至 GND 之间短路导致 VIN 下降时仍能正常工作。VIN 具有 UVLO 保护,但 AVIN 没有 UVLO 保护功能。不得单独使用 AVIN 关断 MP5022C。AVIN 供电电流典型值为 500μA。

过压锁定保护(OVLO)

MP5022C 通过 OV 引脚监控电源电压,以确定是 否过压。从 VIN 到 OV 的外部电阻分压器可灵活 设置过压锁定阈值。

当 OV 引脚上的电压超过 1.24V 时,内部 MOSFET 截止,输出关闭。当 OV 引脚上的电压降至 1.24V-Vov_HYS 以下时,内部 MOSFET 再次导通,输出通过软启动斜率上升。

欠压锁定(UVLO)

如果电源(输入)低于欠压锁定(UVLO)阈值,则禁用输出,且 PG 变为低电平。

当电源超过 UVLO 阈值但未超过 OV 阈值时,则正常输出。

输出电流监控

IMON 提供了一个与输出电流(也即流经功率器件的电流)成正比的电流值。电流检测放大器的增益为 $10\mu A/A$,这意味着 IMON 为每个主 FET 导通的放大器提供 $10\mu A$ 的电流。 当 MOSFET 电流范围为 0A 至 20A 时,将 $10k\Omega$ 电阻接地会产生 0V 至 2V 的电压。IMON 可兼容 0V 至 3V 的电压。在应用电路中,需在 R_{MON} 处并联一个 10nF 以上的电容。

应用信息

电流限设置(R_{SET})

由于电流采样存在公差,MP5022C 限流值应高于正常的最大负载电流值。限流值可使用公式(5)设置:

$$I_{LIMIT} = \frac{1.3(V)}{R_{SET}} \times 10^{5} (A)$$
 (5)

当设置的电流限低于 7A 时,需在 ISET 电阻处 并联一个 R-C 电路(见图 7)。通常,选择 $R=20k\Omega$,C=560pF。

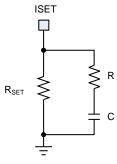


图 7: 用于 ISET 的 R-C 滤波电路

图 8 显示了当限流值大于 7A 时,RSET 电阻值与限流值的关系图。表 2 提供了基于评估板的测试结果。

表 2: 限流值对比限流电阻

限流电阻(kΩ)	6.8	16.2	32.4
限流值(A)	19	8	4.06

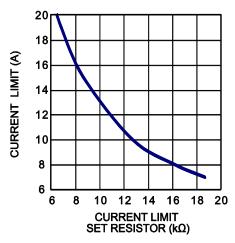


图 8: 限流值 vs. R_{SET} 值(限流值≥7A)

图 9 显示了 RSET 电阻对比 7A 电流及以下电流限的图形视图。



图 9: 限流值 vs. R_{SET} 值(限流值<7A)

电流监控设置

MP5022C 可以监控流过功率 MOSFET 的电流。在 IMON 与地之间连接一个电阻(R_{MON}),用来设置输出增益。如公式(6)所示:

$$I_{MON} = \frac{I_{POWER_FET}}{10^5} (A)$$
 (6)

其中 I_{POWER_FET} 是功率 MOSFET 的电流。在 IMON 与 GND 之间放置一个 10kΩ 电阻,增益 为 100mV/A。在 IMON 与 GND 之间接一个大于 10nF 的电容来稳定 IMON 输出电压。

布局指南

高效的 PCB 布局对于 IC 工作的稳定性至关重要。为获得最佳效果,请参考图 10 并遵循以下指南:

- 1. 在电路板输入端和输出端之间放置的大电流 路径,电流返回路径与最小回路并联,以减 小环路电感。
- 2. 在 VIN 放置一个瞬态电压抑制二极管 (TVS)。
- 3. 将TVS尽可能靠近VIN放置。

TVS用于吸收系统由于输入线路电压尖峰,以及在MP5022C的负载电流急剧下降时,在VIN处产生的电压尖峰。

4. 将 MP5022C 的 GND 连接到一个小的接地岛,用来作为芯片所有信号地的参考。

该信号GND岛可以通过单点接地方法连接到系统的主功率GND。

- 5. 确保VIN上的输入去耦电容到VIN和到GND的 走线最短。
- 6. 将肖特基二极管靠近VOUT和GND,以在功率FET关闭时吸收负电压尖峰。
- 7. 将输出电容放置在尽可能靠近MP5022C的位置,从而尽量减少PCB寄生电感的影响。
- 8. 保持IN和GND焊盘与铺铜连接。
- 9. 在导热垫上添加过孔,以获得更好的散热性能。
- 10. 确保连接所有VIN和VOUT引脚,以实现每个引脚的电流分布相等。

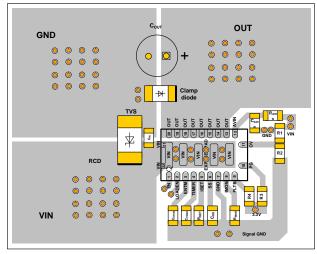


图 10: 推荐布局

设计实例

详细的应用原理图如图 11、图 12 和图 13 所示。图 11 显示了电流限≥7A 的应用电路图。图 12 显示了电流限<7A 的应用电路图。图 13 显示了未使用 LOADEN 的应用电路图。典型性能特性和波形图请见对应章节。更多详细设备应用,请参考相关评估板规格书。

典型应用电路

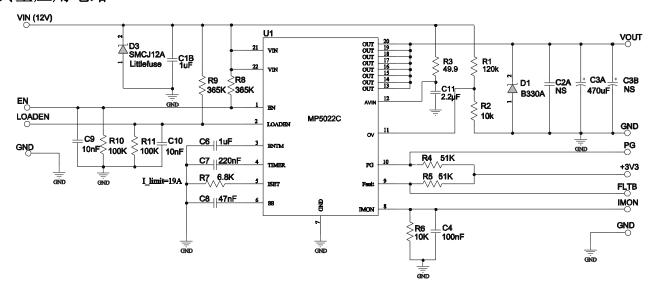


图 11: 限流值≥7A 的应用

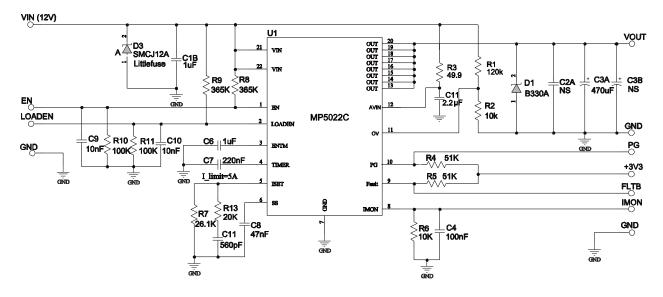


图 12: 限流值<7A 的应用

典型应用电路(续)

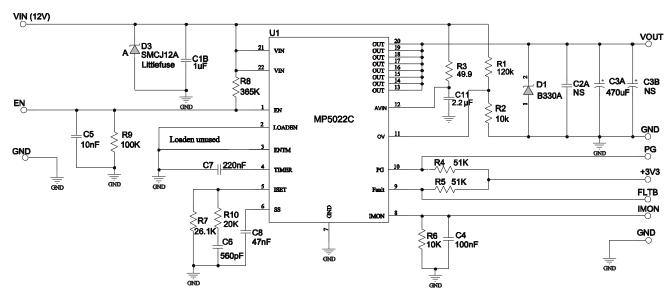
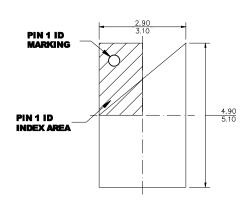



图 13: 未使用 LOADEN

封装信息

QFN-22 (3mmx5mm)

0.45 0.50 PIN1 ID 0.20 0.30 PIN1 ID 0.50 0.125 X45°TYP

20 2.125 1.875

0.20 0.20 0.00

BSC 0.20 0.00

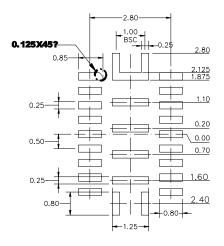
0.50 0.20 0.00

0.50 0.20 0.00

0.50 0.20 0.00

0.50 0.20 0.00

0.50 0.20 0.00


0.50 0.20 0.00

TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-220.
- 5) DRAWING IS NOT TO SCALE.

注:本文中信息如有变更,不另通知。当前所用规格,请联系 MPS。用户应确保其对 MPS 产品的具体应用不侵犯他人知识产权。MPS 不对此类应用承担任何法律责任。