MCQ1805

3kV_{RMS} Isolated Hall-Effect Current Sensor with 580V_{RMS} Working Voltage and Over-Current Detection, AEC-Q100 Qualified

DESCRIPTION

The MCQ1805 is an automotive-grade, linear Hall-effect current sensor for AC or DC current sensing. The Hall array is differential, which cancels out any stray magnetic field.

A primary conductor with a low resistance allows the current to flow close to the IC, which contains high-accuracy Hall-effect sensors. This current generates a magnetic field that is sensed at two different points by the integrated Hall-effect transducers. The magnetic field difference between these two points is then converted into a voltage that is proportional to the applied current. A spinning current technique is used for a low, stable offset.

The galvanic isolation between the pins of the primary conductive path and the sensor leads allows the MCQ1805 to replace optoisolators and other isolation devices.

The MCQ1805 provides fast over-current detection (OCD) to monitor the system for over-current (OC) faults.

The MCQ1805 requires a minimal number of readily available, standard external components. The device's small SOIC-8 footprint saves board area and makes it well-suited for space-constrained applications.

FEATURES

- 3.3V or 5V Single-Supply Options
- Immune to External Gradient Magnetic Fields via Differential Sensing
- Extreme Low-Noise Density
- 3kV_{RMS} Minimum Isolation Voltage
- 580V_{RMS} Maximum Working Voltage
- ±2.5% Total Accuracy
- 5A to 50A Bidirectional or Unidirectional Range
- 120kHz Bandwidth
- Custom Over-Current Detection (OCD) from 50% to 240% of the Rated Current (I_{PMAX})
- Fast OCD with 1µs Response Time
- Output Voltage (V_{OUT}) Proportional to AC or DC Currents
- Ratiometric Output from Supply Voltage
- Factory-Trimmed for Accuracy
- Available in an SOIC-8 Package
- Available in AEC-Q100 Grade 1

CB Certificate Number: CA-11398-UL

APPLICATIONS

- Automotive Systems
- Motor Controls
- Load Detection and Management
- Switch-Mode Power Supplies
- Over-Current (OC) Fault Protection

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

Part Number *, **	Supply Voltage (V)	Rated Current Range (A)	Sensitivity (SENS) (mV/A)	OCD Threshold (A)	Top Marking	MSL Rating		
MCQ1805GS-305-BAEC	3.3	±5	264	±5				
MCQ1805GS-310-BAEC	3.3	±10	132	±10				
MCQ1805GS-320-BAEC	3.3	±20	66	±20				
MCQ1805GS-330-BAEC	3.3	±30	44	±30				
MCQ1805GS-340-BAEC	3.3	±40	33	±40				
MCQ1805GS-350-BAEC	3.3	±50	26.4	±50				
MCQ1805GS-305-UAEC	3.3	5	528	5				
MCQ1805GS-310-UAEC	3.3	10	264	10				
MCQ1805GS-320-UAEC	3.3	20	132	20	-	1		
MCQ1805GS-330-UAEC	3.3	30	88	30				
MCQ1805GS-340-UAEC	3.3	40	66	40				
MCQ1805GS-350-UAEC	3.3	50	52.8	50	MCQ1805			
MCQ1805GS-505-BAEC	5	±5	400	±5	1000	1		
MCQ1805GS-510-BAEC	5	±10	200	±10				
MCQ1805GS-520-BAEC	5	±20	100	±20				
MCQ1805GS-530-BAEC	5	±30	66	±30				
MCQ1805GS-540-BAEC	5	±40	50	±40				
MCQ1805GS-550-BAEC	5	±50	40	±50				
MCQ1805GS-505-UAEC	5	5	800	5				
MCQ1805GS-510-UAEC	5	10	400	10	-			
MCQ1805GS-520-UAEC	5	20	200	20				
MCQ1805GS-530-UAEC	5	30	132	30				
MCQ1805GS-540-UAEC	5	40	100	40				
MCQ1805GS-550-UAEC	5	50	80	50				

ORDERING INFORMATION

* For Tape & Reel, add suffix -Z (e.g. MCQ1805GS-305-BAEC-Z).

** Contact an MPS FAE for additional variants.

PART NUMBERING (MCQ1805GS-ABB-CDDDAEC)

	Operating temperature (TJ):		Current polarity:
G	-40°C to +125°C	С	B = Bidirectional U = Unidirectional
			OCD threshold:
s	Package code for SOIC-8	DDD	Blank = 100% I _{PMAX} (default) 050 = 50% of I _{PMAX} 150 = 150% of I _{PMAX}
			Contact the factory for other OCD level options.
	Supply voltage:		
A	3 = 3.3V supply 5 = 5V supply	AEC	AECQ-100 qualified
BB	Rated current range		

TOP MARKING

MCQ1805 LLLLLLLL MPSYWW

MCQ1805: Part number LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code

PACKAGE REFERENCE

PIN FUNCTIONS

Pin #	Name	Description
1, 2	IP+	Primary current (+). IP+ is the positive terminal pin for the current being sampled. The IP+ pins are connected together internally.
3, 4	IP-	Primary current (-). IP- is the negative terminal pin for the current being sampled. The IP- pins are connected together internally.
5	GND	Ground. GND is the signal ground terminal pin.
6	/OCD	Over-current detection. The /OCD pin is an open-drain, active-low output. Connect a $10k\Omega$ to $500k\Omega$ resistor between the /OCD and VCC pins.
7	VOUT	Analog output.
8	VCC	Voltage supply. Connect a 0.1μ F to 1μ F bypass capacitor between the VCC and GND pins.

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage (V _{CC})	0.3V to +6.5V
Output voltage (V _{OUT})	0.3V to +6.5V
V/OCD	0.3V to +6.5V
Junction temperature (T _J)	165°C
Lead temperature	260°C
Storage temperature	65°C to +165°C

ESD Ratings

Human body model (HBM)	±2kV
Charged-device model (CDM)	±2kV

Recommended Operating Conditions ⁽²⁾

V _{CC} for the 3.3V option	
V _{CC} for the 5V option	4.5V to 5.5V
Operating junction temp (T	J)40°C to +125°C

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The device is not guaranteed to function outside of its operating conditions.

ISOLATION CHARACTERISTICS

Parameters	Symbol	Condition		Units
Dielectric surge strength test voltage	VSURGE	Test ± 5 pulses at 2 pulses per minute, 1.2µs rise, 50µs width, according to IEC 61000-4-5	6000	V
Withstand isolation voltage	Viso	Agency type-tested for 60s, 100% tested in production, in accordance with IEC62368-1:2018		V _{RMS}
Maximum isolation working voltage		Maximum approved working voltage for basic isolation, according to IEC 62368-1:2018		$V_{\text{PK}} \text{ or } V_{\text{DC}}$
				V _{RMS}
External clearance	CLR	Shortest distance through the air from the IP+ and IP- leads to the signal leads	4.2	mm
External creepage	CPG	Shortest distance along the package body from the IP+ and IP- leads to the signal leads	4.2	mm

WITHSTANDING CURRENT CAPABILITY

Parameters	Symbol	Conditions		Units
Surge current test	Isurge	Test ± 5 pulses at 2 pulse per minute, 8µs rise, 20µs width, according to IEC61000-4-5	3000	А
Transient current test ⁽³⁾	ITRANSIENT	Single peak, 10ms	200	А

Note:

3) For the detailed transient current capability test, refer to MPS application note AN178, available on the MPS website.

MCQ1805 COMMON ELECTRICAL CHARACTERISTICS

 V_{CC} = 3.3V for the 3.3V option, V_{CC} = 5V for the 5V option, T_J = -40°C to +125°C, typical values are tested at T_J = 25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
Cumply yelferre	M	3.3V option	3		3.6	V
Supply voltage	Vcc	5V option	4.5		5.5	V
V _{CC} under-voltage lockout (UVLO) threshold	Vcc_uvlo	Vcc rising	2	2.5	3	V
V _{CC} UVLO hysteresis	V _{CC_UVLO_} HYS			400	500	mV
Operating supply current	Icc	$V_{CC} = 3.3V$ for 3.3V option		8	12	mA
Operating supply current	ICC	$V_{CC} = 5V$ for 5V option		8	12	mA
Output capacitance load (6)	CL	From VOUT to GND			4.7	nF
Output resistive load (6)	R∟	From VOUT to GND	4.7			kΩ
Primary conductor resistance	R _P	Effective		1.2		mΩ
Frequency bandwidth	f _{BW}			120		kHz
Power-on time	t _{PO}	IP = IPMAX		80		μs
Rising time	t _R	IP = IPMAX		3		μs
Propagation delay	t _{PD}	IP = IPMAX		2		μs
Response time	tRESPONSE	IP = IPMAX		4		μs
Noise density	Ind	Input referred noise density		100		µA(rms) / √Hz
Noise	I _N	Input referred noise, 120kHz bandwidth		35		mA _(RMS)
Nonlinearity	Elin	Across the full IP range		0.5		%
	KSENS	Vcc = Vcc_min to Vcc_max	98	100	102	%
Ratiometry ⁽⁶⁾	K _{VO}	$V_{CC} = V_{CC_{MIN}}$ to $V_{CC_{MAX}}$, $I_P = 0A$	99	100	101	%
Zero-current output voltage	.,	IP = 0A, bidirectional option		V _{CC} / 2		V
(Vout)	Vout(q)	$I_P = 0A$, unidirectional option		0.1 x Vcc		V
First Hall magnetic coupling factor	P _{MCF1}			1.15		mT/A
Second Hall magnetic coupling factor	P _{MCF2}			0.25		mT/A
Hall plate matching	M _H			±1		%
	Manager	3.3V option, $R_L = 4.7k\Omega$, $T_J = 25^{\circ}C$	V _{CC} - 0.3			V
Saturation voltage ^{(4) (6)}	Vout(h)	5V option, $R_L = 4.7 k\Omega$, $T_J = 25^{\circ}C$	V _{CC} - 0.5			V
	Voltra	3.3V option, $R_L = 4.7k\Omega$, $T_J = 25^{\circ}C$			0.3	V
	Vout(L)	5V option, $R_L = 4.7k\Omega$, $T_J = 25^{\circ}C$			0.5	V

MCQ1805 COMMON ELECTRICAL CHARACTERISTICS (continued)

 V_{CC} = 3.3V for the 3.3V option, V_{CC} = 5V for the 5V option, T_J = -40°C to +125°C, typical values are tested at T_J = 25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
/OCD low voltage (6)	V _{/OCD_L}	Over-current detection (OCD) triggered, $R_{PU} = 10k\Omega$			0.3	V
/OCD external pull-up resistance ⁽⁶⁾	R _{PU}	Connect from /OCD to VCC	10		500	kΩ
OCD current hysteresis	I/OCD_HYS	Percentage of I/OCD	3	12		%
OCD error	E/OCD		-10	±5	+10	%
OCD response time (6)	tresponse_ /OCD	Time from I _P > I/OCD to V/OCD falling below V/OCD_L		1	1.5	μs

MCQ1805-305-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	l _Ρ		-5		+5	А
Sensitivity	SENS	-5A ≤ I _P ≤ +5A, T _J = 25°C		264		mV/A
Sensitivity error		I _P = 5A, T _J = 25°C to 125°C	-2		+2	%
	Esens	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
	V _{OE}	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-15		+15	mV
Offset voltage		$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±10		mV
	_	I _P = 5A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-310-BAEC PERFORMANCE CHARACTERISTICS

V_{CC} = 3.3V, T_J = -40°C to +125°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	l _Ρ		-10		+10	Α
Sensitivity	SENS	-10A ≤ I _P ≤ +10A, T _J = 25°C		132		mV/A
Sensitivity error	Esens	I _P = 10A, T _J = 25°C to 125°C	-2		+2	%
		I _P = 10A, T _J = -40°C to +25°C		±1.5		%
Offset voltage V _{OE}	V	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output error	Етот	I _P = 10A, T _J = 25°C to 125°C	-2.5		+2.5	%
		I _P = 10A, T _J = -40°C to +25°C		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-320-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	IР		-20		+20	Α
Sensitivity	SENS	-20A ≤ I _P ≤ +20A, T _J = 25°C		66		mV/A
Sensitivity error	Esens	I _P = 20A, T _J = 25°C to 125°C	-2		+2	%
		$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offset voltage V _{OE}	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV	
	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output error	Етот	I _P = 20A, T _J = 25°C to 125°C	-2.5		+2.5	%
		$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-330-BAEC PERFORMANCE CHARACTERISTICS

	$V_{CC} = 3.3V.T$	J = -40°C to +125°	C. unless	otherwise	noted.
--	-------------------	--------------------	-----------	-----------	--------

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	IР		-30		+30	А
Sensitivity	SENS	-30A ≤ I _P ≤ +30A, T _J = 25°C		44		mV/A
Sensitivity error	Esens	I _P = 30A, T _J = 25°C to 125°C	-2		+2	%
		$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	V _{OE}	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage		$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output error	Етот	I _P = 30A, T _J = 25°C to 125°C	-2.5		+2.5	%
		$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-340-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-40		+40	Α
Sensitivity	SENS	$-40A \le I_P \le +40A, T_J = 25^{\circ}C$		33		mV/A
Sensitivity error	Esens	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
		$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offset voltage Voe	V	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output error	Етот	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
		$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-350-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-50		+50	Α
Sensitivity	SENS	-50A ≤ I _P ≤ +50A, T _J = 25°C		26.4		mV/A
Sensitivity error	Esens	I _P = 50A, T _J = 25°C to 125°C	-2		+2	%
		$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	V _{OE}	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage		$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output error	Етот	$I_P = 50A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
		$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-305-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 3.3V$, $T_{J} = -40^{\circ}C$ to $+125^{\circ}$	C. unless otherwise noted.
100 = 0.01, 10 = 1000 10000000000000000000000000	

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	lΡ		0		5	А
Sensitivity	SENS	$0A \le I_P \le 5A, T_J = 25^{\circ}C$		528		mV/A
Sensitivity error	Esens	I _P = 5A, T _J = 25°C to 125°C	-2		+2	%
		$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	V	I _P = 0A, T _J = 25°C to 125°C	-15		+15	mV
Offset voltage Vo	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±10		mV
Total output error	Етот	I _P = 5A, T _J = 25°C to 125°C	-2.5		+2.5	%
		$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-310-UAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		0		10	Α
Sensitivity	SENS	$0A \le I_P \le 10A, T_J = 25^{\circ}C$		264		mV/A
Consitivity orror	C	$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	V	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
		$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-320-UAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	IР		0		20	А
Sensitivity	SENS	$0A \le I_P \le 20A, T_J = 25^{\circ}C$		132		mV/A
Sensitivity error	F	I P= 20A, TJ = 25°C to 125°C	-2		+2	%
Sensitivity error	Esens	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offectiveltere	V	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
	_	$I_P = 20A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-330-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 3.3V.T$	J = -40°C to +125°	C. unless	otherwise	noted.
		.,	• • • • • •	

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	IР		0		30	А
Sensitivity	SENS	$0A \le I_P \le 30A, T_J = 25^{\circ}C$		88		mV/A
		I _P = 30A, T _J = 25°C to 125°C	-2		+2	%
Sensitivity error	Esens	$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	N	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
	_	I _P = 30A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-340-UAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		0		40	Α
Sensitivity	SENS	$0A \le I_P \le 40A, T_J = 25^{\circ}C$		66		mV/A
Consitivity orror	C	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage		$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
ffset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total autout arrar	E	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-350-UAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	IР		0		50	А
Sensitivity	SENS	$0A \le I_P \le 50A, T_J = 25^{\circ}C$		52.8		mV/A
Sensitivity error	F	$I_P = 50A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltage	V	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
	_	I _P = 50A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	ETOT(D)			±1		%

MCQ1805-505-BAEC PERFORMANCE CHARACTERISTICS

	$V_{CC} = 5V_{c}$. T ₁ = -40°C te	o +125°C, unless	otherwise noted.
--	-------------------	-----------------------------	------------------	------------------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-5		+5	А
Sensitivity	SENS	-5A ≤ I _P ≤ +5A, T _J = 25°C		400		mV/A
Sanaitivity arror	F	I _P = 5A, T _J = 25°C to 125°C	-2		+2	%
Sensitivity error	Esens	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	V	I _P = 0A, T _J = 25°C to 125°C	-15		+15	mV
Offset voltage	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±10		mV
Total autout array		I _P = 5A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-510-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-10		+10	А
Sensitivity	SENS	-10A ≤ I _P ≤ +10A, T _J = 25°C		200		mV/A
Sopoitivity orror	Earwa	$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	Voe	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-15		+15	mV
Offset voltage	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±10		mV
Total autout arrar	F	$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-520-BAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V, T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ un}$	inless otherwise noted.
---	-------------------------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-20		+20	Α
Sensitivity	SENS	$-20A \le I_P \le +20A, T_J = 25^{\circ}C$		100		mV/A
Consitivity orror	F	$I_P = 20A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	V _{OE}	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	V OE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total autout arrar	F	$I_P = 20A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	Etot(d)			±1		%

MCQ1805-530-BAEC PERFORMANCE CHARACTERISTICS

	$V_{CC} = 5V_{c}$. T ₁ = -40°C to	+125°C. unl	ess otherwise	noted.
--	-------------------	-----------------------------	-------------	---------------	--------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	P		-30		+30	Α
Sensitivity	SENS	-30A ≤ I _P ≤ +30A, T _J = 25°C		66		mV/A
Consitiuity orror	F	I _P = 30A, T _J = 25°C to 125°C	-2		+2	%
Sensitivity error	Esens	$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
	M	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage (6)	V _{OE}	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total autout annan	F	I _P = 30A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	I _P = 30A, T _J = -40°C to +25°C		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-540-BAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V, T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C,$	unless otherwise noted.
--	-------------------------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-40		+40	А
Sensitivity	SENS	$-40A \le I_P \le +40A, T_J = 25^{\circ}C$		50		mV/A
Sanaitivity arror	F	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offent veltage	Voe	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total output arrar	Етот	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	⊏TOT	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-550-BAEC PERFORMANCE CHARACTERISTICS

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		-50		+50	Α
Sensitivity	SENS	$-50A \le I_P \le +50A$, $T_J = 25^{\circ}C$		40		mV/A
Separitivity error	F	$I_P = 50A$, $T_J = 25^{\circ}C$ to $125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	V _{OE}	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
		$I_P = 50A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	E _{SENS(D)}			±1		%
Total output error lifetime drift	Etot(d)			±1		%

MCQ1805-505-UAEC PERFORMANCE CHARACTERISTICS

	$V_{CC} = 5V_{c}$	$T_{1} = -40^{\circ}C$ to	+125°C. unless	otherwise noted.
--	-------------------	---------------------------	----------------	------------------

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	IР		0		5	Α
Sensitivity	SENS	$0A \le I_P \le 5A, T_J = 25^{\circ}C$		800		mV/A
Sensitivity error	F	I _P = 5A, T _J = 25°C to 125°C	-2		+2	%
Sensitivity error	Esens	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltage	V	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-35		+35	mV
Offset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±20		mV
		I _P = 5A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 5A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-510-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V, T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C,$	unless otherwise noted.
--	-------------------------

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	lΡ		0		10	А
Sensitivity	SENS	$0A \le I_P \le 10A, T_J = 25^{\circ}C$		400		mV/A
Sanaitivity arror	F	$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	Voe	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-20		+20	mV
Offset voltage	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±10		mV
	F	$I_P = 10A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 10A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-520-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V, T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ un}$	Inless otherwise noted.
---	-------------------------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	IР		0		20	А
Sensitivity	SENS	$0A \le I_P \le 20A, T_J = 25^{\circ}C$		200		mV/A
	-	$I_P = 20A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	Voe	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	VOE	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
	-	$I_P = 20A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	Етот	$I_P = 20A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	Etot(d)			±1		%

MCQ1805-530-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V$, $T_{J} = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур (5)	Max	Units
Rated current range	lΡ		0		30	Α
Sensitivity	SENS	$0A \le I_P \le 30A, T_J = 25^{\circ}C$		132		mV/A
		$I_P = 30A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	V	I _P = 0A, T _J = 25°C to 125°C	-10		+10	mV
Offset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
		I _P = 30A, T _J = 25°C to 125°C	-2.5		+2.5	%
Total output error	Етот	$I_P = 30A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-540-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V, T_{J} = -40^{\circ}C \text{ to } +125^{\circ}C,$	unless otherwise noted.
--	-------------------------

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	lΡ		0		40	Α
Sensitivity	SENS	$0A \le I_P \le 40A, T_J = 25^{\circ}C$		100		mV/A
Sanaitivity arror	F	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offect veltage	\/	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total autout arrar	Етот	$I_P = 40A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2.5		+2.5	%
Total output error	L TOT	$I_P = 40A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

MCQ1805-550-UAEC PERFORMANCE CHARACTERISTICS

$V_{CC} = 5V$, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

Parameters	Symbol	Condition	Min	Typ ⁽⁵⁾	Max	Units
Rated current range	IР		0		50	А
Sensitivity	SENS	0A ≤ I _P ≤ 50A, T _J = 25°C		80		mV/A
Sonoitivity orror	F	$I_P = 50A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-2		+2	%
Sensitivity error	Esens	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±1.5		%
Offeet veltere	M	$I_P = 0A, T_J = 25^{\circ}C \text{ to } 125^{\circ}C$	-10		+10	mV
Offset voltage	Voe	$I_P = 0A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±5		mV
Total autout arrar	Етот	I _P = 50A, T _J =25°C to 125°C	-2.5		+2.5	%
Total output error	⊏TOT	$I_P = 50A, T_J = -40^{\circ}C \text{ to } +25^{\circ}C$		±2		%
Sensitivity error lifetime drift	Esens(d)			±1		%
Total output error lifetime drift	E _{TOT(D)}			±1		%

Notes:

4) Beyond the rated current range, the current sensor continues to provide an analog V_{OUT} proportional to the primary current (I_P) until the device reaches the high or low saturation voltage. the nonlinearity increases when I_P exceeds the upper end of the specified rated current range (I_{PMAX}).

5) Typical values with " \pm " are $\pm 3\sigma$ values.

6) Guaranteed by design and characterization.

FUNCTIONAL BLOCK DIAGRAM

Figure 1: Functional Block Diagram

OPERATION

Current Rating

 I_{PMAX} is the rated current. The sensor output is linear, and is a function of the primary current (I_P). The output voltage (V_{OUT}) follows the specified performances when I_P is within the rated current range (- I_{PMAX} and + I_{PMAX}) (see Figure 2).

Figure 2: Sensor Output Function

The sensor's ideal V_{OUT} can be calculated with Equation (1):

$$V_{OUT_{IDEAL}}(I_{P}) = V_{OUT(Q)_{TYP}} + SENS_{TYP} \times I_{P}$$
(1)

Where $V_{OUT(Q)_TYP}$ is the typical zero-current V_{OUT} , and SENS_{TYP} is the typical sensitivity.

Sensitivity (SENS)

The sensitivity (SENS, in mV/A) indicates how the output changes when I_P changes. SENS is the product of the average between the two coupling constants (P_{MCF1} and P_{MCF2} , in mT/A) and the transducer gain (in mV/mT). The gain is factory-trimmed to the sensor's target sensitivity.

Coupling Constants (P_{MCF1} and P_{MCF2})

Figure 3 shows a cross-section of the sensor. The first and second Hall magnetic coupling factors are defined as the amount of vertical magnetic field produced at the sensing points 1 and 2 (B_1 and B_2 , respectively) per unit of current injected in the primary conductor. Due to the asymmetrical shape of the primary conductor, the magnetic field generated in the two sensing points is different.

Figure 3: Sensor Cross-Section

Noise (I_N)

The noise (I_N) is a random deviation that cannot be removed by calibrating the device. The input's referred noise is the root mean square (RMS) of the sensor's output noise (in mV), divided by SENS (in mV/A). I_N represents the smallest current that the device is able to resolve without any external signal treatment.

Zero-Current Output Voltage (VOUT(Q))

The zero-current V_{OUT} ($V_{OUT(Q)}$) is V_{OUT} while I_P is 0A. See the Electrical Characteristics section on page 7 for the typical value.

Offset Voltage (VOE)

The offset voltage (V_{OE}) is the difference between the typical $V_{OUT(Q)}$ and the actual $V_{OUT(Q)}$. The variation is due to thermal drift, as well as the factory's resolution limits related to voltage offset trimming. To convert this voltage into amperes, divide V_{OE} by SENS.

Nonlinearity (ELIN)

 $I_{\rm P}$ and the sensor output should have a linear relationship, indicated by a straight line. A line that is not straight indicates nonlinearity (E_{LIN}), which is a deviation.

 E_{LIN} (in %) can be estimated with Equation (2):

$$\mathsf{E}_{\mathsf{LIN}} = \frac{\mathsf{Max}(\mathsf{V}_{\mathsf{OUT}}(\mathsf{I}_{\mathsf{P}}) - \mathsf{V}_{\mathsf{LIN}}(\mathsf{I}_{\mathsf{P}}))}{\mathsf{V}_{\mathsf{OUT}}(\mathsf{I}_{\mathsf{PMAX}}) - \mathsf{V}_{\mathsf{OUT}}(-\mathsf{I}_{\mathsf{PMAX}})} \times 100 \tag{2}$$

Where $V_{\text{LIN}}(I_{\text{P}})$ is the approximate straight line calculated by the least square method.

Note that depending on the curvature of $V_{OUT}(I_P)$, E_{LIN} can be positive or negative.

Total Output Error (ETOT)

The total output error (E_{TOT} , in %) is the relative difference between the sensor output and the ideal output at a given I_P. E_{TOT} can be calculated with Equation (3):

$$\mathsf{E}_{\mathsf{TOT}}(\mathsf{I}_{\mathsf{P}}) = \frac{\mathsf{V}_{\mathsf{OUT}}(\mathsf{I}_{\mathsf{P}}) - \mathsf{V}_{\mathsf{OUT_IDEAL}}(\mathsf{I}_{\mathsf{P}})}{\mathsf{SENS}_{\mathsf{TYP}} \times \mathsf{I}_{\mathsf{P}}} \times 100$$
(3)

Where SENS_TYP is the typical sensitivity, and $V_{OUT_IDEAL}(I_P)$ is the ideal V_{OUT} calculated with Equation (1) on page 18.

 E_{TOT} incorporates all error sources, and is a function of I_P. At currents close to I_{PMAX}, E_{TOT} is mainly affected by the SENS error. At currents close to 0A, E_{TOT} is mostly caused by V_{OE}. Note that when I_P = 0A, E_{TOT} diverges to infinity due to the constant offset.

Ratiometry Coefficients

Ideally, the sensor output should be ratiometric. This means that SENS and $V_{OUT(Q)}$ scale with the supply voltage (V_{CC}). The ratiometry coefficients (K_{SENS} and K_{VO}) measure whether the SENS and V_{OUT(Q)} are proportional.

K_{SENS} can be estimated with Equation (4):

$$K_{SENS} = \frac{SENS(V_{CC})/SENS(V_{CC_{TYP}})}{V_{CC}/V_{CC_{TYP}}}$$
(4)

K_{VO} can be calculated with Equation (5):

$$K_{VO} = \frac{V_{OUT}(I_{P} = 0, V_{CC}) / V_{OUT}(I_{P} = 0, V_{CC_{TYP}})}{V_{CC} / V_{CC_{TYP}}}$$
(5)

Where V_{CC_TYP} is 3.3V for the 3.3V option, and V_{CC_TYP} is 5V for the 5V option.

Ideally both K_{SENS} and K_{VO} should equal 1.

Power-On Time (tPO)

The power-on time (t_{PO}) is the time interval from when power is first applied to the device until the output can correctly indicate the applied I_P. t_{PO} is defined as the time between the following moments:

- 1. <u>t1</u>: V_{CC} reaches the minimum operating voltage (V_{CC_UVLO}).
- 2. <u>t2</u>: V_{OUT} reaches 90% of its final value (V_{OUT_FINAL}) under an applied I_P (see Figure 4).

Figure 4: Power-On Time (tPO)

Propagation Delay (t_{PD})

The propagation delay (t_{PD}) represents the internal latency between an event that has been measured and the sensor's response. t_{PD} is defined as the time between the following moments:

- 1. <u>t1</u>: I_P reaches 20% of its final value (I_{P_FINAL}).
- 2. <u>t2</u>: V_{OUT} reaches 20% of V_{OUT_FINAL} , as it corresponds to the applied I_P (see Figure 5).

Figure 5: Propagation Delay (tpd)

Rising Time (t_R)

The rising time (t_R) is defined as the time between the following moments:

- 1. <u>t1</u>: The sensor's V_{OUT} reaches 10% of its fullscale value (V_{OUT_MAX}).
- 2. <u>t2</u>: The sensor's V_{OUT} reaches 90% of V_{OUT_MAX} (see Figure 6 on page 20).

Figure 6: Rising Time (t_R)

The sensor bandwidth (f_{BW}) is defined as the 3dB cutoff frequency. Using t_R , f_{BW} can be estimated with Equation (6):

$$f_{BW} = 0.35 / t_{R}$$
 (6)

Response Time (t_{RESPONSE})

The response time (t_{RESPONSE}) is defined as the time between the following moments:

- 1. <u>t1</u>: The I_P signal reaches 90% of $I_{P_{-}FINAL}$.
- 2. <u>t2</u>: V_{OUT} reaches 90% of V_{OUT_FINAL} , as it corresponds to the applied I_P (see Figure 7).

Figure 7: Response Time (tresponse)

APPLICATION INFORMATION

Over-Current Detection (OCD)

The MCQ1805 integrates fast over-current detection (OCD) via the /OCD pin. When I_P exceeds the current limit (I_{OCD}), a high-speed detection circuit triggers OCD during the OCD response time ($t_{RESPONSE_OCD}$). I_{OCD} can be preset between 50% and 240% of I_{PMAX} for different part numbers. Figure 8 shows OCD timing.

If I_P remains at $I_{/OCD}$ for longer than $t_{RESPONSE_/OCD}$, then the /OCD pin voltage ($V_{/OCD}$) is pulled down to the /OCD low voltage threshold ($V_{/OCD_L}$).

If I_P falls below (I_{/OCD} - I_{/OCD_HYS}) during the next t_{RESPONSE_/OCD}, V_{/OCD} rises. t_{/OCD_RISE} is the time it takes for V_{/OCD} to rise from logic low to logic high. This time is determined by the pull-up resistance (R_{PU}) and the capacitance between the /OCD and GND pins. A small resistance and capacitance results in a fast /OCD rising time.

Self-Heating Performance

The conductor and MCQ1805 temperatures can rise when current flows through the primary conductor. This means that self-heating should be carefully verified to ensure that the IC junction temperature (T_J) does not exceed its maximum threshold (165°C).

The thermal behavior strongly depends on the IC's thermal environment and cooling capacity. In particular, thermal behavior depends on the PCB copper area and thickness. The thermal response is also related to the current (e.g. the amplitude and frequency of an AC current, or the peaks and duty cycle of a pulsed DC current).

Figure 9 shows the self-heating performance of the MCQ1805 with a DC current input. This data was collected with the part mounted on the MCQ1805 evaluation board (see Figure 10 on page 22) when $T_A = 25^{\circ}$ C. Values were taken after 10 minutes of continuous current.

Figure 9: Self-Heating Performance with a DC Current Input

Figure 10 on page 22 shows the top and bottom layers of the MCQS1805's evaluation board. In total, the board includes 37cm², and has 4oz of copper connected to the primary conductor via the IP+ and IP- pins. The copper covers both the top and bottom layers. Thermal vias connect the two layers.

Top Layer

Bottom Layer Figure 10: MCQ1805 Evaluation Board

TYPICAL APPLICATION CIRCUIT

Figure 11: Typical Application Circuit

PACKAGE INFORMATION

0.013(0.33) 0.020(0.51) 0.013(0.33) 0.020(0.51) 0.013(0.33) 0.013(0.33) 0.013(0.33) 0.013(0.33) 0.013(0.33) 0.053(1.35) 0.069(1.75) SEATING PLANE 0.004(0.10) 0.010(0.25) BSC

SIDE VIEW

FRONT VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION, OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantity/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MCQ1805GS-505-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-510-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-520-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-530-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-540-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-550-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-505-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-510-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-520-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-530-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-540-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-550-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-305-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-310-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-320-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-330-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-340-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-350-BAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-305-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-310-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-320-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-330-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-340-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm
MCQ1805GS-350-UAEC	SOIC-8	2500	N/A	N/A	13in	12mm	8mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	7/18/2023	Initial Release	-
1.01	4/23/2024	Added the UL certification logo	1

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.