

PRODUCT RELIABILITY REPORT

Product: MCQ1823-AEC1

Reliability Department Monolithic Power Systems 79 Great Oaks Boulevard San Jose, CA 95119 Tel: 408-826-0600 Fax: 408-826-0601

> Monolithic Power Systems, Inc. 1

<u>1. Device Information</u>

Product:	MCQ1823-AEC1
Package:	12-PIN THIN FC-QFN (3mm×3mm)
Process Technology:	BCD
Report Date:	08/07/2023

<u>2. Summary of Test Results</u>

Test	#	Test Condition	Lot# or	Test Results	Comment
D		1 CTTD 000	Date Code	(S.S./Rej)	
Preconditioning,	A1	J-STD-020	2145	308/0	MSL=1
prior to THB/HAST,		Reflow: Tp>= 260° C,	2222	308/0	
AC/UHST, TC,		tp>=30sec, 3×reflows	2311	308/0	
HTSL and PTC					
Temperature	A2	JESD22-A101,	2145	77/0	
Humidity Bias		@85°C/85%RH static	2222	77/0	
(THB)		bias at Vinmax for 1000	2311	77/0	
		hours or equivalent			
Unbiased Autoclave	A3	JESD22-A102,	2145	77/0	
(AC)		@121°C/100%RH for	2222	77/0	
		168 hours or equivalent	2311	77/0	
Temperature	A4	JESD22-A104, from -	2145	77/0	
Cycling (TC)		65°C to 150°C for 1000	2222	77/0	
		cycles or equivalent	2311	77/0	
Power Temperature	A5	JESD22-A105, from -	KBD0616	45/0	
Cycling (PTC)	_	40°C to 125°C for 1000			
		cycles.			
High Temperature	A6	JESD22-A103, @150°C	2145	77/0	
Storage Life (HTSL)		for 1000 hours	2222	77/0	
~~~~~)			2311	77/0	
High Temperature	B1	JESD22-A108,	KBD0616	77/0	
Operating Life		@Tj=150°C for 1000	KBD1133	77/0	
(HTOL)		hours or equivalent	KAD0880	77/0	
Early Life Failure	B2	AEC-Q100-008,	KBD0616	800/0	
Rate (ELFR)		@Tj=150°C for 48	KBD1133	800/0	
· · ·		hours, or equivalent	KAD0880	800/0	



Un-cycled High Temperature Data Retention – UCHTDR	B3	AEC-Q100-005, @150°C for 1000 hours	KBD0616 KBD1133 KAD0880	77/0 77/0 77/0	
Program/Erase at High Temperature – PE-HT	B3	AEC-Q100-005, @85°C for 1000 times	KBD0616 KBD1133 KAD0880	77/0 77/0 77/0	
High Temperature Data Retention – HTDR	B3	AEC-Q100-005, @150°C for 1000 hours	KBD0616 KBD1133 KAD0880	39/0 39/0 39/0	
Dynamic READ – HTOL-R	B3	AEC-Q100-005, Read @125°C for 100K times	KBD0616 KBD1133 KAD0880	38/0 38/0 38/0	
Program/Erase at Low Temperature – PE-RT	B3	JESD47,@25°C for 1000 times.	KBD0616 KBD1133 KAD0880	77/0 77/0 77/0	
Low Temperature Data Retention – RTDR	B3	AEC-Q100-005,@25°C for 500hours	KBD0616 KBD1133 KAD0880	39/0 39/0 39/0	
Dynamic READ – RTOL-R	B3	AEC-Q100-005, Read @25°C for 100K times	KBD0616 KBD1133 KAD0880	38/0 38/0 38/0	
Electrostatic Discharge Human Body Model (HBM)	E2	AEC-Q100-002	KBD0616	3/0	>4000V
Electrostatic Discharge Charged Device Model (CDM)	E3	AEC-Q100-011	KBD0616	3/0	>750V
Latch-up (LU)	E4	AEC-Q100-004	KBD0616	6/0	>+/-100mA & >1.5Vccmax



## **3. Failure Rate Calculation**

Sample Size:	3540
Rejects:	0
Activation Energy (eV):	0.7
Equivalent Device Hours:	$2.76 \times 10^8$ Hours
Failure Rate (FIT@60%CL):	3.3 FIT
MTBF (years):	34,449 Years

### **Revision / Update History**

Revision	Reason for Change	Date	Rel Engineer
1.0	Initial release	August 2023	Ramon Lei



#### Appendix: Description of Reliability Test and Failure Rate Calculation

High Temperatu	ure Operating Life Test
Purpose:	This test is a worst-case life test that checks the integrity of the product. The high temperature testing is use for acceleration of any potential failures over time. The calculation for failure rate
Condition:	(FIT) using the operating ambient temperature is done using the Arrhenius equation. Tj=150°C @ Vinmax
Pass Criteria:	All units must pass the min/max limits of the datasheet.
ESD Test	
Purpose:	The purpose of the ESD test is to guarantee that the device can withstand electrostatic voltages during handling.
Condition: Pass Criteria:	Human Body Model and Charged Device Model ESD Testing on every pin. The device must be fully functional after testing and pass the min/max limits in the datasheet.
<u>IC Latch-Up Te</u> Purpose:	st The purpose of this specification is to establish a method for determining IC latch-up
-	characteristics and to define latch-up failure criteria. Latch-up characteristics are extremely important in determining product reliability and minimizing No Trouble Found (NTF) and Electrical Overstress (EOS) failures due to latch-up.
Condition: Pass criteria:	Voltage and current injection All pins with the exception of "no connect" pins and timing related pins, shall be latch-up tested. The device must be fully functional after testing and pass the min/max limits in the datasheet.
Moisture/Reflov	v Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
Purpose:	The purpose of this standard is to identify the classification level of nonhermetic solid state surface mount devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid damage during assembly solder reflow attachment and/or repair operations.
Condition: Pass criteria:	Bake + moisture sock + 3X reflow at 260°C All units must pass the min/max limits of the datasheet
Accelerated Mo	isture Resistance- Unbiased Autoclave
Purpose:	To check the performance of the device in humid environments. This test checks the integrity of the passivation, poor metal to plastic seal and contamination level during assembly and material compatibility.
Condition: Pass Criteria:	121°C/15psig/100% RH (no bias) All units must pass min/max limits of the datasheet
<u>Temperature Cy</u>	
Purpose:	This test is used to evaluate the die attach integrity and bond integrity. This is similar to the Thermal Shock test, but can generate different failure modes due to the longer dwell time and
Condition:	gradual temperature change. -65°C to 150°C
Pass Criteria:	All units must pass min/max limits of the datasheet
Steady State Te	mperature Humidity Bias Life Test
Purpose:	This is to check the performance of the device in humid environments. This test checks the integrity of the passivation, poor metal to plastic seal and contamination level during assembly and material compatibility.

85%RH at 85°C with Vin=Vinmax All units must pass min/max limits of the datasheet Pass Criteria:



#### Highly Accelerated Temperature and Humidity Stress Test

Purpose:	This is an equivalent test to Steady State Temperature Humidity Bias Life test with different
	(higher) temperature stress condition.
Condition:	85%RH at 130°C with Vin=Vinmax
Pass Criteria:	All units must pass min/max limits of the datasheet

#### Failure Rate Calculation

The failure rate is gauged by a Failures-In-Time (FIT) based upon accelerated stress data. The unit for FIT is failure per billion device hour.

$$FIT Rate = \frac{(\chi^2/2) \times 10^9}{EDH}$$

Where

 $\chi^2$  (Chi-Squared) is the goodness-of-fit test statistic at a specified level of confidence; EDH= Equivalent Device Hours = AF × (Life test sample size) × (test duration); AF= Acceleration Factor.

High Temperature Operating Life (HTOL) test is usually done under acceleration of temperature and voltage. The total number of failures from the stress test determines the chi-squared factor.

$$AF = AF_T \times AF_V$$

The Temperature Acceleration Factor AF_T:

$$AF_{T} = \exp\left(\frac{E_{a}}{K}\left(\frac{1}{T_{J(use)}} - \frac{1}{T_{J(stress)}}\right)\right)$$

$$\begin{split} T_{Juse} = & \text{Junction temp under typical operating conditions}; \\ T_{Jstress} = & \text{Junction temp under accelerated test conditions}; \\ Ea is Activation energy=0.7eV; \\ & \text{K=Boltzmann's constant}=8.62 \times 10^{-5} \text{ eV/K}. \end{split}$$

The voltage Acceleration Factor AFv:

$$AF_{v} = e^{\beta \times [V_{stress} - V_{use}]}$$

$$\begin{split} V_{use} &= Gate \ voltage \ under \ typical \ operating \ conditions; \\ V_{stress} &= Gate \ voltage \ under \ accelerated \ test \ conditions; \\ \beta &= Voltage \ acceleration \ factor \ (in \ 1/Volts) \ and \ specified \ by \ technology. \\ Note: \ For \ calculation \ in \ the \ report, \ AF_V = 1 \ for \ simplicity. \end{split}$$

MTBF (Mean Time Between Failure) equals to 109/FIT (in hours).