

PRODUCT RELIABILITY REPORT

Product: MPQ8645P

Reliability Department Monolithic Power Systems 79 Great Oaks Boulevard San Jose, CA 95119 Tel: 408-826-0600

Fax: 408-826-0601

1. Device Information

Product:	MPQ8645P
Package:	25-PIN THIN FC-QFN(4mm×5mm)
Process Technology:	BCD
Report Date:	09/12/2018

2. Summary of Test Results

Test	Test Condition	Lot# or	Test Results	Comment
		Date Code	(S.S./Rej)	
Temperature, Bias,	JESD22-A108,	HP4796	77/0	
and Operating Life	@+125°C for 1000	HAK697	77/0	
	hours or equivalent	HAK699	77/0	
ESD: Human Body Model (HBM)	ANSI/ESDA/JEDEC JS- 001	HP6862	3/0	>2000V
ESD: Device Charged Model (CDM)	ANSI/ESDA/JEDEC JS- 002	HP6862	3/0	>750V
Latch-up	EIA/JESD78	HP6862	6/0	>+/-100mA & >1.5Vccmax
Preconditioning,	J-STD-020	1752	308/0	MSL = 1
prior to THB/HAST,		1803	308/0	
AC/UHAST, TC, HTSL		1809	308/0	
High Temperature	JESD22-A103, @150°C	1752	77/0	
Storage Life	for 1000 hours	1803	77/0	
		1809	77/0	
Temperature Cycling	JESD22-A104, from -	1752	77/0	
	65°C to 150°C for 1000	1803	77/0	
	cycles or equivalent	1809	77/0	
Unbiased Autoclave	JESD22-A118,	1752	77/0	
(AC)/ Unbiased	@130°C/85%RH for	1803	77/0	
HAST(UHAST)	168 hours or equivalent	1809	77/0	
Steady State	JESD22-A110,	1752	77/0	
Temperature Humidity	@130°C/85%RH static	1803	77/0	
Bias Life Test (THB)/ Highly Accelerated Temperature and Humidity Stress Test (HAST)	bias at Vinmax for 96 hours or equivalent	1809	77/0	

Power and Temperature Cycling	JESD22-A105 @ -40°C to 125°C for 1000 cycles	HP4796	45/0	
Un-cycled High Temperature Data Retention – UCHTDR	JESD47, @150°C for 1000 hours	HP4796 HAK697 HAK699	77/0 77/0 77/0	
Program/Erase at High Temperature – PE-HT	JESD47, @85°C for 1000 times	HP4796 HAK697 HAK699	77/0 77/0 77/0	
High Temperature Data Retention – HTDR	JESD47, @150°C for 1000hours	HP4796 HAK697 HAK699	39/0 39/0 39/0	
Dynamic READ – HTOL-R	JESD47, Read @125°C for 100K times	HP4796 HAK697 HAK699	38/0 38/0 38/0	
Program/Erase at Low Temperature – PE-RT	JESD47,@25°C for 1000 times	HP4796 HAK697 HAK699	77/0 77/0 77/0	
Low Temperature Data Retention – RTDR	JESD47,@25°C for 500hours	HP4796 HAK697 HAK699	39/0 39/0 39/0	
Dynamic READ – RTOL-R	JESD47, Read @25°C for 100K times.	HP4796 HAK697 HAK699	38/0 38/0 38/0	

3. Failure Rate Calculation

Sample Size: 3380
Rejects: 0
Activation Energy (eV): 0.7

Equivalent Device Hours: 2.64×10^8 Hours

Failure Rate (FIT@60%CL): 3.5 FIT MTBF (years): 32,892 Years

Revision / Update History

Revision	Reason for Change	Date	Rel Engineer
1.0	Initial release	September 2018	Ramon Lei

Appendix: Description of Reliability Test and Failure Rate Calculation

High Temperature Operating Life Test

Purpose: This test is used to determine the effects of bias conditions and temperature on solid state devices

over time. It simulates the devices operating condition in an accelerated way. The voltage and

temperature are used for acceleration of any potential failures over time.

Condition: $T_j=125^{\circ}C$ @ Vinmax.

Pass Criteria: All units must pass the min/max limits of the datasheet.

ESD Test

Purpose: The purpose of the ESD test is to guarantee that the device can withstand electrostatic voltages

during handling.

Condition: Human Body Model and Charged Device Model.

Pass Criteria: ESD Testing on every pin. The device must be fully functional after testing and pass the min/max

limits in the datasheet.

IC Latch-Up Test

Purpose: The purpose of this specification is to establish a method for determining IC latch-up

characteristics and to define latch-up failure criteria. Latch-up characteristics are extremely important in determining product reliability and minimizing No Trouble Found (NTF) and

Electrical Overstress (EOS) failures due to latch-up.

Condition: Voltage and current injection.

Pass criteria: All pins with the exception of "no connect" pins and timing related pins, shall be latch-up tested.

The device must be fully functional after testing and pass the min/max limits in the datasheet.

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices

Purpose: The purpose of this standard is to identify the classification level of non-hermetic solid state surface

mount devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid damage during assembly solder reflow attachment and/or

repair operations.

Condition: Bake + moisture sock + 3X reflow at 260°C.

Pass criteria: All units must pass the min/max limits of the datasheet.

High Temperature Storage Life

Purpose: The test is typically used to determine the effects of time and temperature, under storage conditions,

for thermally activated failure mechanisms and time-to-failure distributions of solid state electronic

devices, including nonvolatile memory devices (data retention failure mechanisms).

Condition: Bake at 150°C/175°C or other conditions.

Pass Criteria: All units must pass min/max limits of the datasheet.

Accelerated Moisture Resistance- Unbiased Autoclave/ Unbiased HAST

Purpose: To check the performance of the device in humid environments. This test checks the integrity of the

passivation, poor metal to plastic seal and contamination level during assembly and material

compatibility.

Condition: 121°C/100% RH (Unbiased Autoclave), 130°C/85% RH (Unbiased HAST).

Pass Criteria: All units must pass min/max limits of the datasheet.

Temperature Cycle Test

Purpose: This test is conducted to determine the ability of components and solder interconnects to withstand

mechanical stresses induced by alternating high- and low-temperature extremes.

Condition: -65°C to 150°C or other conditions.

Pass Criteria: All units must pass min/max limits of the datasheet.

Temperature Humidity Bias(THB)/Biased Highly Accelerated Stress Test (BHAST)

Purpose: This is to evaluate the reliability in humid environments. Temperature, humidity, and bias

conditions are applied to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it check the performance of the device in humid

environments.

Condition: 85°C/85%RH(THB), 130°C/85% RH (BHAST), with Vin=Vinmax.

Pass Criteria: All units must pass min/max limits of the datasheet.

Failure Rate Calculation

The failure rate is gauged by a Failures-In-Time (FIT) based upon accelerated stress data. The unit for FIT is failure per billion device hour.

$$FIT\ Rate = \frac{(\chi^2/2) \times 10^9}{EDH}$$

Where

χ2 (Chi-Squared) is the goodness-of-fit test statistic at a specified level of confidence;

EDH= Equivalent Device Hours = $AF \times (Life \text{ test sample size}) \times (test duration);$

AF= Acceleration Factor.

High Temperature Operating Life (HTOL) test is usually done under acceleration of temperature and voltage. The total number of failures from the stress test determines the chi-squared factor.

$$AF = AF_T \times AF_V$$

The Temperature Acceleration Factor AFT:

$$AF_{T} = \exp\left(\frac{E_{a}}{K}\left(\frac{1}{T_{J(use)}} - \frac{1}{T_{J(stress)}}\right)\right)$$

 $T_{Juse} = Junction temp under typical operating conditions;$

T_{Jstress} =Junction temp under accelerated test conditions;

Ea is Activation energy=0.7eV;

K=Boltzmann's constant=8.62×10⁻⁵ eV/K.

The voltage Acceleration Factor AF_V:

$$AF_{V} = e^{\beta \times [V_{stress} - V_{use}]}$$

V_{use} = Voltage under typical operating conditions;

V_{stress} = Voltage under accelerated stress test conditions;

 β = Voltage acceleration factor (in 1/Volts) and specified by technology;

Note: For calculation in the report, $AF_V = 1$ for simplicity.

MTBF (Mean Time Between Failure) equals to 109/FIT (in hours).