MP44010+HR1000A+MP6922(A)

PFC+Half Bridge LLC+SR 220W AC-DC Power Supply for Servers

Design Concept Report

220W AC-DC Resonant Power Supply

Design Specs	Value	Unit	
Input Voltage	90-265	VAC	
Input Frequency	47-63	Hz	
Output Voltage	12	VDC	
Output Current	18.3	Α	
Isolation	Yes		
MPS IC	MP44010, HR1000A, MP6922(A)		
Application	Server Power Supply		
Application	AC-DC Power Supply		

Document Number	DCXXX
Author	Application Engineering Department
Date	Nov, 2014
Revision	1.0

Design Summary

MP44010+HR1000A + MP6922(A) is a design concept for a universal offline isolated power supply with 12V, 18.3A output. It contains the estimated specification of the power supply, a detailed circuit diagram, drawing of the power inductors and transformers. Such information would be useful to the customer to create a similar design with less effort.

There is no physical PCB that can be ordered for MPS's design concepts, however schematics and further support is available upon request. For ordering reference designs that include an assembled PCB and more detailed spec, please refer to MPS website for more information.

MP44010+HR1000A+MP6922(A)

PFC+Half Bridge LLC+SR

220W AC-DC Power Supply for Servers

DESCRIPTION

Here introduces a design concept for a 220W AC-DC power supply, it is primary for server applications but also applies to other general AC-DC applications.

This design includes a boost PFC pre-regulator using MP44010. This design concept also utilizes MPS's state-of-art half bridge LLC resonant controller HR1000A and dual fast synchronous rectifier MP6922(A) to realize very high overall efficiency.

MP44010 is a boundary conduction mode PFC controller which can provide simple and high performance active power factor correction using minimum external components.

HR1000A is a controller designed specifically for the resonant half-bridge ZVS. It controls the output power by changing the switching frequency and controlling the half-bridge with a constant 50% duty cycle. And HR1000A can optimize the light load consumption for the burst mode operation.

ELECTRICAL SPECIFICATIONS

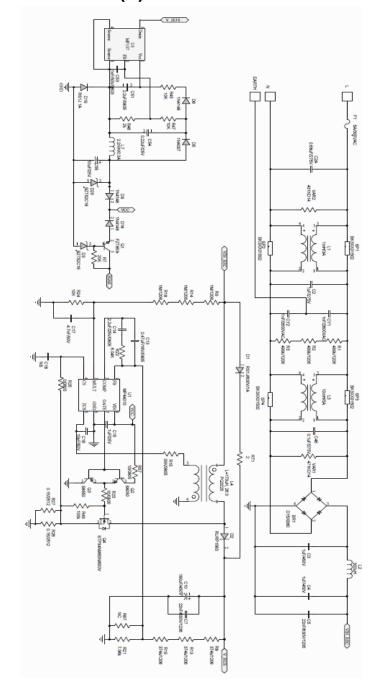
Parameter	Symbol	Value	Units
Input AC Voltage	V_{AC}	90 to 265	VAC
Input Frequency	F	47 to 63	Hz
Output Voltage	V_{OUT}	12	VDC
Output Current	I _{OUT}	18.3	Α
Power Factor	PF	>0.9*	
THD		<20%*	
Active Mode Efficiency	Eff	>90%*	

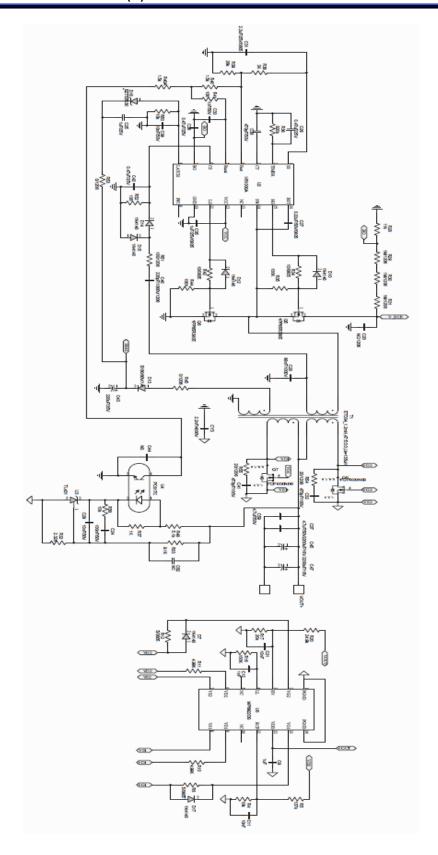
^{*}By estimate

FEATURES

- High Efficiency
- Active PFC
- Very Low No-Load Power Consumption
- Output Short Circuit Protection
- Over Voltage Protection

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page.


"MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.


Warning: Although this board is designed to satisfy safety requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

MP44010+HR1000A + MP6922(A) DESIGN CONCEPT SCHEMATICS

MP44010+HR1000A+MP6922(A) - 220W SERVER POWER SUPPLY DESIGN CONCEPT

Design Number	MPS IC Number	
	HR1000A	
MP44010+HR1000A + MP6922(A)	MP44010	
	MP6922, MP6922A	

Disclaimer

Monolithic Power Systems (MPS) reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. MPS makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

MPS cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a MPS product. No circuit patent licenses are implied.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

MPS PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICALAPPLICATIONS.

Inclusion of MPS products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to MPS.

MPS semiconductors are typically used in power supplies in which high voltages are present during operation. High voltage safety precautions should be observed in design and operation to minimize the chance of injury.

APPENDIX: PFC INDUCTOR SPECIFICATION

Electrical Diagram Primary Winding N1 N1 N2 Teflon tube Winding Diagram Winding Diagram Note: O Winding start

Electrical Characteristic

Parameter	Value	
Inductance	170µH±5%	
Core	PQ3220	
Bobbin	PQ3220	
Core Material	PC40	
Turns Ratio	26:3	

Winding Specification

Winding	Pin	Number	Wire	Number of	Tube
Order	Start	Finish	Type (Φ)	Turns	Tube
N1	6	1	0.1mm*100	26	Matching Wire
N2	5	7	0.2	3	Matching Wire

1Ts shielding to

APPENDIX: LLC TRANSFORMER SPECIFICATION

Winding Diagram Electrical Diagram Primary Winding Secondary Winding NI Pri. Side Sec. Side N3 N4 N4 N2 N2 1Ts 5 N1N3 Winding Start Auxiliary Winding Teflon Tube Note: 0 Winding start Teflon tube

Electrical Characteristic

Parameter	Condition	Value
Primary Inductance		1.2mH±5%
Leakage Inductance		135uH (Max)
Core		ETD34
Bobbin		ETD34
Core Material		PC40
Turn Ratio	N1:N2:N3:N4	47:5:3:3

Winding Specification

Winding	Pin Number			Wire	Number of	Tube
Order	Start	Finish	Type (Φ)	Turns		
N1	1	3	0.1mm*40	47	Matching with Wire	
N2	2	4	0.2mm	5	Matching with Wire	
N3	5	6	0.1mm*200	3	Matching with Wire	
N4	6	7	0.1mm*200	3	Matching with Wire	